GENERAL INDEX
OF
VOLUMES XLII-L OF THE THIRD SERIES.

In the references to volumes xli to l, only the numerals i to ix are given.

NOTE.—The names of minerals are inserted under the head of "MINERALS": all obituary notices are referred to under "OBITUARY." Under the heads "BOTANY," "CHEMISTRY," "GEOLOGY," "ROCKS," the references to the topics in these departments are grouped together; in many cases, the same references appear also elsewhere.

A
Abbe, C., atmospheric radiation of heat, iii, 384; Mechanics of the Earth's Atmosphere, v, 442.
Aberration, Rayleigh, iii, 432.
Absorption by alum, Hutchins, iii, 526.
Absorption spectra, Julius, v, 254.
Academy of Sciences, French, ix, 328.
Academy, National, meeting at Albany, vi, 488; Baltimore, iv, 504; New Haven, viii, 513; New York, ii, 523; Washington, i, 521, iii, 441, v, 527, vii, 484, ix, 428.
on electrical measurements, ix, 286, 316.
Texas, Transactions, v, 78.
Acoustics, researches in, Mayer, vii, 1.
Acton, E. H., Practical physiology of plants, ix, 77.
Adams, F. D., melilite rock from Canada, iii, 260; Ueber das Norian oder Ober-Laurentian von Canada, vi, 153; nepheline-syenite in Ontario, viii, 10; the Laurentian of Canada, i, 58.
Aerodynamics, experiments in, Langley, ii, 427; vii, 41.
Agassiz, A., observations in the West Indies, v, 78, 358; notes from the Bermudas, vii, 411; on the Florida Reef, ix, 164; Bahamas and the Reefs of Cuba, ix, 425; underground temperatures at great depths, 1, 508; Age of the earth, King, v, 1; Fisher, v, 464.
Agricultural analysis, Wiley, i, 431.
Air, diselectrification, Kelvin, ix, 470; liquefaction of, by Perkins, Davidson, ix, 235.
Alabama, geological survey, see Geol. Reports and Surveys.
Industrial and Scientific Society, i, 257.
Alaska, expedition to, Russell, ii, 171.
Albinopean studies, Uhler, iv, 333.
Alps, section of, Rothpletz, vii, 482.
Alternating currents, Bedell and Crehan, vii, 435; resonance analysis, Pupin, viii, 379, 473.
Altitudes in the United States, dictionary of, Gannett, iv, 262.
Alum crystals, anomalies in the growth, Miers, vii, 350.
Aluminum, wave length of ultra-violet lines of, Range, i, 71.
American Association of Chemists, i, 337.
Geological Society, see Geol. Society of America.
Philosophical Society, v, 527, see Association.
Ami, H. M., geology of Quebec, iii, 75.
Ampere's laws, apparatus, Raps, vii, 479.
Andes, appendix to travels amongst, Whymper, iii, 436.
Angot, A., les aurores polaires, 1, 509.
Antarctica, physical geography of, Fricker, vi, 317.
Appalachian gold fields, Becker, i, 425.
Are light for libraries, Dobson, vii, 76.
Argon, see Chemistry.
Arkansas coal measures, Smith, vii, 482.
Agricultural survey, see Geol. Reports and Surveys.
Arms, J. H., Insecta, i, 296.
Arnold, C. H., increasing the frequency of electrical oscillations, vi, 359.
Arnold, H., Die Negativ-retouche, etc., iv, 256.
Articulates, derivation and homologies of, Dana, vii, 325.
Asphaltum from Trinidad, ix, 2.
Atmosphere, new gaseous constituent, vi, 257.
Atmospheric radiation, Hutchins, iii, 256.
Atkinson, vi, 256.
Aurores borealis, Trowbridge, vii, 140.
Audubon monument, vii, 256.
Australia, barrier reef of, Saville-Kent, v, 257.
Ayres, E. F., plattnerite, iii, 257.

B
Bahama Expedition of the State Univ. of Iowa, Nutting, ix, 257.
Bahamas and the Reefs of Cuba, Agassiz, ix, 257.
Bailey, E. H. S., halotrichite from Pitkin Co., Colorado, i, 257; Tonganoxie meteorite, ii, 257.
Baker, E. P., eruption of Kilauea, i, 257; ii, 77.
Ballard, H. O., fossil shells in the drumlins of the Boston Basin, viii, 257.
Baltimore, geol. map, Williams, v, 257.
Barker, G. F., Elementary Chemistry, iv, 257.
Barbour, v, 257.
Barlow, A. E., relations of the Laurentian and Huronian of Lake Huron, iv, 257.
Barometer, mercurial, Waggener, ii, 257.
Barrett, W. F., Practical Physics, v, 257.
Barrett, W. L., on daimonelix, ix, 257.
Barlow, A. E., relations of the Laurentian and Huronian of Lake Huron, iv, 257.
Barlow, A. E., relations of the Laurentian and Huronian of Lake Huron, iv, 257.
Bartow, G. H., channels on drumlins, vi, 257.
Barrows, C., compressibility of hot water and solvent action on glass, i, 257.
Beard, v, 257.
Bere, v, 257.
Bere, v, 257.
Bead, v, 257.
Bead, v, 257.
Beal, v, 257.
Baker, E. P., eruption of Kilauea, i, 257.

secular variation of terrestrial magnetism. i, 109, 189, 314.
Bayley, W. S., fulgurite from Maine, iii, 327; fibrous intergrowth of augite and plagioclase, iii, 515.

stratified garnet from Buckfield, Me., iv, 79; chlorite-syenite of Me. and N. H., iv, 590.

Summary of Progress in Mineralogy and Petrography in 1892, vi, 76; actinolite-magnetite schists from N. Minnesota, vi, 176.
Beach, F. E., cupric nitrate in the voltameter, use of, vi, 81.
Beaches of L. Erie, Leverett, iii, 281; iv, 1.

Becker, G. F., “potential” a Bernoullian term, v, 97; Fisher’s new hypothesis, vi, 137; Green’s use of “potential” vi, 151; finite elastic stress-strain function, vi, 337; astronomical conditions favorable to glaciation, vii, 95.
Bedell, F., effects of self-induction and distributed static capacity in a conductor, iv, 389; work on alternating currents, noticed, v, 435.
Beecher, C. E., development of the Brachiopoda, i, 348.

development of Bilobites, ii, 51.

Upper Silurian strata near Penobscot Bay, Me., iii, 412.

development of the Brachiopoda, Pt. II, iv, 133; lower Ordovician fauna in Columbia Co., N. Y., iv, 410.

larval forms of Trilobites from the lower Helderberg, vi, 142; larval form of Triarthrus, vi, 378; thoracic legs of Triarthrus, vi, 407; appendages of Triarthrus, vii, 298.
structure of Trinucleus, ix, 307.
Behrens, H., Microchemical Analysis, ix, 74.
Bergen, J. Y., Jr., Text-book of Physics, v, 255.
Bermudas, notes from, Agassiz, vii, 411.
Berzelius and Liebig, Letters from 1831-1845, v, 433.
Bibliography by the International Congress of Geologists, iii, 71.

Bibliotheca Polytechnica, i, 482.

Zoologica, Taschenberg, ii, 438; iv, 503; vii, 199.
Bigelow, F. H., terrestrial magnetism, i, 78; solution of aurora problem, i, 83; reply to Nipher on the theory of solar corona, i, 505; solar corona, ii, 1; causes of variations of the magnetic needle, ii, 253; inversions of temperatures in solar magnetic period, viii, 435; the earth a magnetic shell, i, 81.

Biological lectures, Wood’s Holl, vii, 406.

Bionomie des Meeres, Waithet, vi, 240.

Bird, C., Elementary Geology, i, 249.

Birds, North American, Nehring, vii, 139; ix, 484.

Bishop, S. E., Kilauea in April, 1892, iv, 207.

Bismuth, resistance in strong magnetic fields, Henderson, viii, 427.

Bitumens, origin, Peckham, viii, 389; work on, Jaccard, i, 509.
Blair. Chemical analysis of iron, ii, 428.

Blake, W. P., columbite of Black Hills, South Dakota, i, 408; lead and zinc regions of Wisconsin, vi, 306.

Blanford, W. T., fauna of British India, Mammalia, Pt. II, iii, 388.

Blowpipe Analysis, Landauer, iv, 80.

Endlich, v, 76.

Bloxam, C. L., Chemistry, noticed, i, 68.

Bolometer, surface, Kurlbaum, iii, 239.

Bolton, H. C., Bibliography of Chemistry, vi, 301.

Boltwood, B. B., double salts of cesium chloride, etc., i, 249.

Boltzmann, Maxwell’s Theory of Electricity and Light, iii, 536; vii, 194.

Bonaparte, R., Excursion in Corsica, i, 509.

Bonney, T. G., story of our planet, viii, 430.

Bonnier, G., cultures, experimentales dans les Alpes et les Pyrenees, i, 255.

Boston Society of Nat. History, prizes given by, iii, 541.

Botanical Garden of Missouri, i, 336; v, 526; i, 507.

botanical works—French Academy, v, 355.
society, Italian, iii, 437.

Botanical Works—Australische Florenelement in Europa, Ettingshausen, i, 332.
BOTANICAL WORKS—
Botanik, Lehrbuch der, Frank, ix, 75; Giesenhagen, ix, 75; Pax, ix, 75; Strasburger and Schimper, ix, 75.
Botany, Gray’s, Bailey, ix, 325.
Practical, Bower, ix, 78.
Text-book, Vines, ix, 481.
Cellulose, Cross, Bevan and Beadle, ix, 482.
Die natürlichen Pflanzen-familien, Nos. 68, 69, Engler and Prantl, iii, 162: Engelmann, vi, 76; Engler, i, 78.
Elms of Massachusetts, Dame, i, 254.
European plants, index, Richter, i, 165.
Flora of Mt. Desert, Rand and Redfield, vii, 431.
Practical, Willis, ix, 77.
Flowers of Field and Garden, Matthews, i, 78.
India, vegetable resources, Watts, vii, 511.
Kewensis, Index, i, 508.
Lichens found in Britain, Crombie, vii, 77.
Mycetozoa, Lester, ix, 245.
Nursery-Book, Bailey, i, 442.
Oaks, West American, Greene, i, 383.
Pflanzen-Teratologie, Pensig, ix, 75.
Plants of Orizaba, Seaton, vi, 76.
Practical Physiology, Darwin and Acton, ix, 77.
Silva of North America, Sargent, i, 73.
Sowerby’s models of British Fungi in the British Museum, vii, 78.
Synoptical flora of North America, vol. i, 1, 429.

BOTANY—
Aeration of solid tissues, Devaux, iv, 502.
Anatomy of plants, comparative, Chatin, iii, 161.
Annual plants, vitality, Holm, ii, 304.
Atmosphere, constitution, Phipson, vii, 431.
Australian narcotics, ix, 483.
Balken in den Holzelementen der Coniferen, i, 254.
Bennettites Gibsonianus, fructification, Solms-Laubsch, iii, 387.
Berberis, movements of the stamens, Chauveaud, ix, 165.
Blanced seedlings, how they may be saved, Cornu, v, 356.
Botanic gardens in the equatorial belt and South seas, Goodale, ii, 173, 260, 347, 434, 517.
Botany, economic possibilities of, Goodale, ii, 271.
Chalazogamy, Nawaschin, 1, 429.
Chlorophyll in leaves, Etard, iii, 498.
Corticium Oakesii and Michenera Areocrea, notes on, Peirce, i, 163.
Cultures experimentales dans les Alpes et les Pyrénnées, Bonnier, i, 355.
Dissemination, interesting method, Daun, ix, 483.
Endogones from Exogones, origin of, Henslow, vi, 77.
Fructification von Bennettites Gibsonianus, Solms-Laubsch, i, 381.
Galápagos flora, Robinson and Greenman, 1, 135.
Genus Lamourouxia, Robinson and Greenman, 1, 169.
Germination of seeds, effect of poison on, Cornevin, iii, 161.
Grafting, Daniel, viii, 512.
Hypertrophie des lenticelles chez la pomme de terre, Devaux, i, 442.
Inflorescence in descriptive, Hy, vii, 513.
Intracellular crystallization, artificial, Belzun, iv, 501.
Isoetes lacustris, Farmer, i, 384.
Laminariaeae, muciferous system, Guignard, iv, 501.
Leaf-removal from grape vines, effect, Munz, iii, 487.
Mexican plants, Robinson and Greenman, 1, 150.
Multiple buds, researches, Russell, iv, 501.
Muscelae, respiration, Jönsson, viii, 431.
Nitrification of soil, Dehénin, vi, 158.
Nutationskrümmungen, etc., Hansgirg, i, 385.
Ovule and embryo-sac in Vincetoxicum, Chauveaud, iii, 498.
Perfumes of flowers, localization of Meenard, v, 355.
Plants, action of Pyocyanic bacillus on, Charrin, vi, 158.
Prodrumus Faunas Mediterraneae, Carus, iv, 326.
Protoplasmverbindungen in der Pflanze, Kientz-Gerloff, i, 518.
bei Algen, Kohl, i, 520.
Rainfall and leaf-form, Stahl, vi, 77.
Botany—

Recherches anatomiques sur les hy-
brids, Brandza, i, 74.

Root-grafting, Daniel, iii, 162.

Species common to Europe and
America, Blanchard, iii, 161.

Sphenophyllum, l'appariel fructifica-
teur, de, Zeiller, vii, 239.

Terebinthacee, Jadin, viii, 513.

Tribus der Gaertneri, Solereder. i, 384.

Turgescence and transpiration in
fleshy plants, Aubert, vi, 77.

Umbelliferae, assimilation in, de
Lamarlière, iii, 160.

Vegetation, influence of moisture
on, Gain, v, 356.

Water, absorption by roots, Le-
comte, ix, 167.

See also under Geology.

Bower, F. O., Practical Botany, ix, 78.

Brackett, R. N., newtonite and re-
cortorite, ii, 11.

Brandza, M., recherches anatomiques
sur les hybrides, i, 74.

Braner, J. C., geol. survey of
Arkansas, i, 435; ii, 347; v, 73.

Brazil, nepheline rocks in, Derby, v,
74.

Brewer, W. H., notice of Daniel
Cady Eaton, l, 184.

Brigham, A. F., drift bowlders in
central New York, ix, 213.

Brigham, W. T., recent eruption of
Kilanea, i, 507.

British Geology, Annals, 1891. Blake,
v, 525.

Museum, catalogues of, Lydekker,
i, 330.

Broadhead, G. C., Cambrian and the
Ozark series. vi, 57.

Brügger, W. C., Eruptivgesteine des
Kristianiagebietes, i, 348.

Brown, W., Practical Physics, v, 524.

Browning, F. E., separation of ba-
rain from calcium, iii, 314; of
strontium from calcium, iii, 50, 638.

separation of barium from.
strontium, iv, 459; separation of
strontium from calcium, iv, 462.

determination of iodine in haloid
salts by arsenic acid, v, 384; in-
fluence of free nitric acid and
water regia on the precipitation of
barium as sulphate, v, 390.

separation of copper from cad-
mium, vi, 280.

Brückner's Klimaschwankungen, i,
141.

Burton, W. K., the great earthquake
of Japan, 1891, iv, 80.

Byerly, Fourier's series and spheric-
ral etc. Harmonics, vii, 160.

C

Cajori, E., History of Mathematics,
vii, 321.

Calcium lines, new, Eder and Valenta,
ix, 150.

California, State mineralogist's report,
1890, Ireland, i, 440.

barium, vii, 250.

Cretaceous, so-called Wallala beds
as a division of, Fairbanks, v, 473.

gold ores, Turner, ix, 374, 478;
mineralogical report, ix, 242.

Call, R. E., serpent from Iowa, i, 297;
silicified woods of eastern Arkansas,
i, 394; distribution of North Amer-
ican Viviparidae, viii, 132; Life of
Rafinesque, ix, 247.

Calvin, S., Iowa geol. survey, vol. i,
1892, vi, 397.

Cambridge Natural History, vol. iii,
molluscs, l, 79.

Campbell, G. F., double chlorides,
bromides and iodides of cesium and
zine, vi, 431; cesium-cobalt and
cesium-nickel, etc., viii, 418.

Campbell, M. R., Tertiary changes in
the drainage of Virginia, viii, 21.

Canada, geol. survey, iii, 77; ix, 248;
1, 347.

Candle flames, law, Glen, vii, 400.

Caoutchouc, structure, Luaders, vi,
135.

Cape Cod, sea encroachment at, Marin-
din, ii, 172.

Carbon of the electric oven, spectrum,
Deslandres, l, 501.

Carhart, H. S., a one volt standard
cell, vi, 60; Physics for University
students, ix, 238.

Carnegie, D., law and theory in
Chemistry, viii, 357.

Carus, J. V., Prodromus Fauna Medi-
terraneae, etc., i, 73; vi, 320.

Cary, A., geological facts on Grand
river, Labrador, ii, 419, 516.

Caustics, demonstration, Wood, l, 301.

Cayenx, L., pre-Cambrian organisms,
ix, 323; l, 267.

Celestial Handbook, Poole, v, 528.

Chalmers, R., glacial lake St Law-
rence of Upham, ix, 273.

Chamberlin, T. G., relationship of
 Pleistocene to Pre-pleistocene of
Mississippi Basin, i, 359; diversity
of the glacial period, v, 171; drain-
age features of Upper Ohio basin,
vii, 247; correction, 483.

Chemical Works—

Chemical Analysis, Crookes, viii,
425; of Inorganic Substances, ix,
316.
GENERAL INDEX.

CHEMISTRY

Ammonium-lead halides, Wells and Johnston, vi, 25.

Antimony blue, Sebor, vii, 428.

determination, Gooch and Grue-
ner, ii, 213; and arsenic sepa-
rated, Gooch and Danner, ii, 308;
and bismuth alloys, thermo-
electric heights, Hutchins, viii,
236; and rubidium, double hal-
des, Wheeler, vi, 269.

Arabinose produced from wheat
bran, Steiger and Schulze, i, 437.

Argon, Rayleigh and Ramsay, ix, 275.
combined with benzene vapor,
Berthelot, ix, 422.
correction to paper on, Hill, 1,
70.

fluorescence, Berthelot, 1, 264.
lines in the spectrum of atmos-
phere, Newall, ix, 424.
physical properties, Rayleigh, 1,
264.

Prout’s hypothesis, Hill, ix, 405.
spark spectrum, Hartley, ix,
435.
specific refraction, 1, 416.
and helium, Hill, i, 539; Bou-
chard, i, 501.
in meteoric iron, Ramsay, i, 264.
refractivity and viscosity, Ray-
leigh, i, 418.
in uraninite, Ramsay and Crookes, ix, 421.

Arsenic acid. Gooch and Phelps,
vii, 216.

with antimony and tin, Gooch
and Hodge, vii, 382.

with cesium and rubidium,
double halides, Wheeler, vi, 88.
in copper, estimation of minute
quantities, Gooch and Moseley,
vii, 392.
distinguished from antimony,
Deniges, i, 427.
tests for, Clark, vi, 297.

Azoimide or Hydrazoic acid, Curt-
tius, i, 154.
inorganic synthesis, Wislicenus,
iv, 421.

Barium, determination in presence
of calcium and magnesium, Mar,
iii, 521; estimation of, Mar, i, 288.
precipitation influenced by nitric
acid and aqua regia, Browning,
v, 309.

separation from strontium by
amyl alcohol, Browning, iv, 459;
separation from calcium, Browning,
iii, 314.
sulphate in analysis, Phinney,
v, 468.
CHEMISTRY

Battery, secondary, chemistry of, Cantor, ii, 160.

Bismuth, atomic mass, Schneider, ix, 313.

Black sulphur of Magnus, Knapp, ii, 432.

Boiling-point apparatus for determining molecular masses, Sakurai, v, 346.

Borneo and isoborneol, crystal forms, Hobbs, ix, 449.

Boron, amorphous, Moissan, iv, 497; i, 499.

atomic mass, Abrahall, iv, 498.

tri-iodide, Moissan, ii, 256.

trisulphide and pentasulphide of, Moissan, v, 430.

Bromvalerianic-acid, Spenzer, ix, 113.

Cesium and cadmium, double chlorides, bromides and iodides, Wells and Walden, vi, 425.

etc., double halides, with thallium, etc., Pratt, ix, 397.

chloride, double salts of, etc., Wells and Boltwood, i, 249.

properties, Beketoff, iii, 431.

quantitative determination, Wells, vi, 186.

rubidium, etc., double chlorides and bromides, Walden, vii, 288.

trihalides, Wells and Penfield, i, 17.

and zinc, double chlorides, bromides and iodides, Wells and Campbell, vi, 431.

Cesium-cobalt and cesium-nickel halides, etc., Campbell, vii, 410.

Cesium-cupric bromides, Wells and Walden, vii, 94.

Cesium-lead and potassium-lead halides, Wells, v, 121.

Cesium-mercuric halides, Wells, iv, 221; crystallography of, Penfield, iv, 311.

Caffeine and theine, identity of, Dunstan and Shepheard, v, 522.

Calcium, barium and strontium, carbides, Moissan, viii, 506.

Capillary phenomena and molecular mass, Goldstein, i, 64.

Carbazide and di-urea, Curtius and Heldenreich, ix, 151.

Carbon, allotropism of amorphous, Luzi, iv, 497.

baron and silicon in electric furnace, Moissan, vii, 476.

CHEMISTRY

Carbon compounds, chemistry of, von Richter, ii, 509; dispersion, Barbier and Roux, i, 324.

in meteoric iron, Moissan, i, 499.

new forms, Luzi, iv, 251.

sulphide, von Lengyell, viii, 235.

oxidation of different forms, Wiesener, vi, 431.

preparation under high pressure, Moissan, vi, 477.

produced from cyanogen, P. and L. Schützenberger, i, 241.

Carbon boride, Moissan, viii, 305.

chlorides, production, V. Meyer, ix, 312.

di-iodide, Moissan, vii, 253.

di-oxide determination, Gooch and Phelps, i, 101; electricity produced in preparation of, Hanssknecht, i, 513; industrial production of liquid, Troost, iv, 421.

monoxide, action of heat on Berthelot, ii, 67; new reaction, ii, 170; density, Leduc, vi, 206.

Carbonyl compounds, constants of refraction, Nasini and Anderlini, ix, 58.

sulphide, Nuriscsán, iii, 431.

Carborundum, Mühlauser, vii, 477.

Charcoal, deportment with the halogens, etc., Mixter, v, 363.

Chemical change, influence of moisture, Baker, viii, 422.

phenomena at low temperatures, Pictet, v, 157, 432.

reactions, dead space in, Liebreich, i, 239, ii, 170; in jelly, speed of, Reformatsky, i, 485; relation of refractive index to, Fény, vi, 68.

and electrical energy in voltaic cells, Levay, ii, 66.

Chloracetic acid, thermochemistry, Tanatá, vii, 76.

Chlorates, estimation, Gooch and Smith, ii, 220.

and nitrates, estimation of, Roberts, vi, 231.

Chloride of mercury batteries, Fitch, viii, 434.

Chlorides, cesium-cupric, Wells and Dupee, vii, 91; Wells, vii, 96.

Chlorine expansion, Richardson, iii, 430.

generation of, Gooch and Kreider, viii, 166.

preparation, by nitric acid and manganese dioxide, Lunge and Pret, vi, 68.
CHEMISTRY—

Chlorine. properties of liquid, Knetsch, i, 153.
Chloroform, effect of low temperatures, Pictet, ix, 150.
Chromium, manganese and uranium in the electric furnace, Moissan and Viole, vii, 73; prepared by means of magnesium, Glätzel, i, 153; separation from iron and aluminum, Riggs, viii, 409.
Coal dust explosions, Thorpe, iv, 250.
Gas flames, luminoity, Lewes, iv, 70.
Compounds containing lead and extra iodine, Wells, i, 21.
Compressibility of hydrogen, oxygen, nitrogen, Amagat, i, 512.
Copper, chemical equivalent, Beach, vi, 81.
Cupric chloride solutions, relations of to heat, Reicher and Van Deventer, i, 66.
Cyanogen, structure of the flame, Smithells and Dent, vii, 421.
Dextrine and gum arabic, molecular masses, Linebarger, iii, 426.
Diammonium, Curtius, ix, 56.
Diamond, production artificially, Moissan, viii, 68.
Di-ethyl hydrazine, Harries, ix, 151.
Dihydroxytartaric acid as a reagent for sodium, ix, 313.
Electrolysis of alkali salts, Arrhenius, vii, 72; of a liquid, indirect, Andreoli, i, 344; by alternating currents, Hopkinson, Wilson, and Lydall, vii, 66; of steam, Thomson, vii, 315.
Electrolytic gas, temperature of ignition, Freyer and V. Meyer, v, 156.
Elements, genesis of, Crookes, i, 429.
Endothermic decompositions obtained by pressure, Lea, vi, 413; reaction of, with chlorine and oxygen, Harker, v, 349; effect on electrical properties of palladium, Brucchielli, vii, 396.
Hydrazine, inorganic preparation, Duden, ix, 311.
Hydrate, Curtius and Schulz, ii, 257.
Hydrazoic acid, Curtius and Radenhausen, i, 437.
Hydrogen, occlusion by lead, Newman and Streintz, iii, 533; physical constants, Olzowski, ix, 409; reaction of, with chlorine and oxygen, Harker, v, 349; effect on electrical properties of palladium, Brucchielli, vii, 396.
and oxygen, relative densities, Rayleigh, iv, 418.
peroxide, anhydrous, Wolfenstein, ix, 229; in the atmosphere, Boch, viii, 67.
Ethane and propane, Hainlen, ix, 149.
Ethyl ether, preparation of, Krafft, vii, 479.

CHEMISTRY—

Ferrons iron in silicates, Pratt, viii, 149.
Fluorine, free, produced by chemical means, Brauner, viii, 439.
physical properties, Moissan, iii, 149, 429.
Fluosulphonic acid, Thorpe and Kirman, v, 232.
Freezing points of very dilute solutions, Raoult, v, 67.
Fusing points, high, V. Meyer, Riddle and Lamb, ix, 288.
Gases, separation by electric discharge, Baly, vi, 286.
Gaseous hydrocarbons, heats of combustion, Berthelot and Matignon, vii, 74.
Gravi-volumeter, Japp, iii, 149.
Halogen, determination in mixed silver salts, Gooch and Fairbanks, i, 27.
Heat, influence on chemical reactions, Lemoine, vii, 283.
of combustion of nitrogenous animal products, Berthelot and André, i, 66.
of fusion and solubility, Walker, i, 65.
re-conversion of, into chemical energy, Naumann, v, 155.
Helium, Ramsay, Collie and Travers, i, 259.
compound nature of, from cleiite, Runge and Paschen, i, 413.
line, wave length of the D, Palmer, i, 357.
spectrum, Crookes, i, 305.
Hydrate of sodium trioxide, Tafel, ix, 148.
Hydrogen, occlusion by lead, Newman and Streintz, iii, 533; physical constants, Olzowski, ix, 409; reaction of, with chlorine and oxygen, Harker, v, 349; effect on electrical properties of palladium, Brucchielli, vii, 396.
and oxygen, relative densities, Rayleigh, iv, 418.
peroxide, anhydrous, Wolfenstein, ix, 229; in the atmosphere, Boch, viii, 67; in the electrolysis of sulphuric acid, Kuriloff, vi, 70;
CHEMISTRY—
color, etc., of, Spring, i, 343; and ozone, constitution, Traube, vi, 474.
phosphide, Retgers, ix, 148.
Hydrosulphides, metallic, Linder and Ploton, iii, 362.
Hydroxylamine, constitution, Koltoff, vi, 71; free, de Bruyn, iii, 151, iv, 253, v, 430; Brauhl, vii, 235.
Hyponitrous acid, Thum, vii, 317.
Indigo-carmine, synthesis of, Heyn, viii, 233.
Iron carbonyl, indices of, Ostwald, v, 296; determinations of by means of solid solutions, Van't Hoff, i, 152; new principle of determining, Nernst, i, 239; titration method for determining, Küster, viii, 65.
Iodic acid, action of reducing agents on, Roberts, vii, 422; viii, 151.
Iodine, base-forming function of, Meyer and Hartmann, vii, 399; new bases, Meyer and Hartmann, viii, 503, in haloid salts determined by arsenic acid, Gooch and Browning, v, 334.
in its solutions, chemical condition, Gautier and Charpy, i, 241.
Ions, color of, Ostwald, v, 347; Lea, ix, 357; electromotive activity of, Nernst and Panli, v, 156.
Iron carbonyl, Mond and Langer, iii, 151; in water gas, Roscoe and Scudder, iii, 132.
manganese and calcium, separation, Riggs, iii, 135.
and nickel-tetracarbonyl, Mond and Quincke, ii, 424.
Isomorphism, Retgers, iii, 68.
Lactic acid resolved into optically active constituents, Purdie and Walker, v, 66.
Levalacetic ferment on dextrose, rhamnose and mannitol, Tate, vii, 75.
Lead tetracetate, Hutchinson and Pollard, vii, 75; tetrachloride, double salts, Wells, vi, 180.
Lummer-Brodhun prism in colorimetry, Krliss, viii, 66.
Magnesium chloride separated from the chlorides of sodium and potassium, Riggs, iv, 103.
Manoerymeter, De Visser, vii, 130.
Manganese, new element, Richmond and Off, v, 66.
Mercuric sulphide, change of black to red, Spring, i, 342.
Mercurous chloride, size of the molecule, V. Meyer and Harris, viii, 506.

CHEMISTRY—
Mercury, detection in cases of poisoning, Lecco, ii, 68.
Metallic carboxyls, Mond, iv, 422.
Metals, fluidity below their melting points, Spring, ix, 467; and oxides in the electric arc, fusion and volatilization, Moissan, viii, 131.
Molecular formula of hydrogen fluoride, i, 514; formulas of liquids, Ramsay, vii, 396.
mass determined from rate of evaporation, Kronberg, vi, 296; determinations of by means of solid solutions, Van't Hoff, i, 152; new principle of determining, Nernst, i, 239; titration method for determining, Küster, viii, 65.
Molybdenum and tungsten, new oxygen compounds, Fehard, iii, 70.
Motochemistry, Molinari, vii, 238.
Nickel and cobalt, atomic masses, Winkler, ix, 312.
Nitrates, iodometric determination of, Gooch and Gruener, iv, 117; Gruener, vi, 43.
Nitric acid, reduction by ferrous salts, Roberts, vi, 126.
Nitro-copper, Sabatier and Sondereg, vi, 394.
Nitrogen, anomaly in the density, Rayleigh, viii, 504; see Argon.
explosive haloid compounds, Seliwanow, viii, 67.
group, new element, Bayer, ix, 290.
preparation and properties of pure, Threlfall, vi, 476.
and air, refractive indices of liquid, Liveing and Dewar, vi, 478.
monoxide, Smith, vii, 475; Villard, ix, 57; boiling and freezing points, Ramsay and Shields, vi, 297.
peroxide, dissociation, Ostwald, iii, 430.
trioxide, Lunge and Porschnew, ix, 56.
Nitro-metals, Sabatier and Sandersons, vii, 478.
Osmotic experiment, Nernst, i, 152.
pressure, Planck, i, 131; Boltzmann, i, 512; measurement of, Tammann, iv, 71.
Oxidation of nitrogen by the spark, Lepel, iv, 421.
Oxygen from calcium plumbate, Kassner, vii, 398.
extration from air, Kassner, i, 514.
CHEMISTRY-

Oxygen, hydrogen and nitrogen, densities, Rayleigh, vii, 234.

in illuminating gas, vi, 478.

for lime light, Hepworth, v, 158.

line spectrum, Elsig, vii, 479.

liquid, optical properties, vi, 69, 393.

two-fold spectra, Baly, ix, 468.

and air, liquefied, properties, Dewar, iv, 419.

Ozone, formation at high temperatures, Brunck, vi, 475;

from oxygen, Shenstone and Priest, vi, 394;

produced by rapid combustion, Ilosvay, ii, 338;

temperature of steam, Brunck, vi, 475;

from boiling, Sakurai, iv, 496.

Sarcolactic acid produced by the fermentation of inactive lactic acid, Hlosvay, ii, 389;

production, acid, Frankland and MacGregor, iii, 150.

Pentahalides, alkali-metal, iv, 42.

Perchlorates, Kreider, i, 287.

Perchloric acid, preparation, etc., Kreider, ix, 443.

Persulphates, crystallized, Marshall, iii, 69.

Petroleum in its relations to asphaltic pavements, Peckham, vii, 28.

Phenanthrene as a solvent in cryoscopic determinations, Garrelli and Ferratini, vii, 232.

Phenol, coefficient of molecular depression, Juillard and Curchod, iv, 72.

Phosphoric acid, basicity, Berthelot, iii, 532.

oxide, preparation of pure, Shenstone and Beck, vi, 70.

Phosphorus, conversion of yellow to red, Retgers, vii, 475;

preparation by the action of aluminum upon the phosphates, Rossel and Frank, vii, 68.

Platinochlorides and platinum subchlorides, Lea, viii, 397.

Platinum, polarization by oxygen and hydrogen, Markofsky, iii, 531.

Potassium determined spectroscopically, Gooch and Hart, ii, 448.

permanganate in iron analysis, Roberts, vii, 290;

and sulphuric acid, interaction, Gooch and Danner, iv, 301.

and lead, peculiar halides, Wells, vi, 190.

and sodium carbonyls, Joannis, vii, 318.

Precipitated membranes, permeability, Tammann, v, 252.

Precipitates, separation of, at the surface-bounding electrolytes, Kümmler, v, 157.

Selenic acid, reduction by hydrochloric acid, Gooch and Evans, i, 400.

reduction by potassium bromide in acid solution, Gooch and Scoville, i, 402.

Selenious acid determined by potassium permanganate, Gooch and Clemons, i, 51.

Selenium, reduction of the acids of, by hydriodic acid, Gooch and Reynolds, i, 254.

Silica, volatilization of, Cramer, vi, 290.

Silver, allotropic, Lea, i, 179, 259, ii, 312; Prange, i, 325.

chlorides, Lea, iv, 444, 446.

haloid molecule, disruption of, Lea, iii, 527.

hemisulphate, Lea, iv, 322.

hyponitrite produced from hydroxylamine, Wislicenus, vii, 72.

metallic solutions, Lea, viii, 343.

notes on, Lea, iv, 444.

oxide, estimation and dehydration of, Lea, iv, 246.

solutions of metallic, Lea, vii, 343.

and alkali-metals, double halides of, Wells and Wheeler, iv, 155.

Sodium, preservation, Rosenfeld, ii, 70.

Sodium-amine, etc., Joannis, i, 515.

Solubility, law of, applied to solutions of salts, Linebarger, ix, 48.

Solution and pseudo-solution, Linder and Picton, ix, 467.

Solutions, nature of certain, and new means of investigating them, Lea, v, 478.

Chemistry-

Quicklime, inertness, Veley, vi, 300.

Quinine, Beyer, iv, 252.

Rotatory power of liquids, effect of temperature on, Agnan, vi, 392.

Rubidium determined by the spectroscope, Gooch and Phinney, iv, 392.

lead halides, etc., Wells, vi, 34.

and potassium trihalides, Wells and Wheeler, iii, 475.

Salt-solutions, rise of, in filter papers, Fischer and Schmidtmber, v, 431;

temperature of steam from boiling, Sakurai, iv, 496.

Sarcocyclic acid produced by the fermentation of inactive lactic acid, Frankland and MacGregor, vii, 74.

Selenium acid, reduction by hydrochloric acid, Gooch and Evans, i, 400.

reduction by potassium bromide in acid solution, Gooch and Scoville, i, 402.

Selenious acid determined by potassium permanganate, Gooch and Clemons, i, 51.

Selenium, reduction of the acids of, by hydroiodic acid, Gooch and Reynolds, i, 254.

Silica, volatilization of, Cramer, vi, 290.

Silver, allotropic, Lea, i, 179, 259, ii, 312; Prange, i, 325.

chlorides, Lea, iv, 444, 446.

haloid molecule, disruption of, Lea, iii, 527.

hemisulphate, Lea, iv, 322.

hyponitrite produced from hydroxylamine, Wislicenus, vii, 72.

metallic solutions, Lea, viii, 343.

notes on, Lea, iv, 444.

oxide, estimation and dehydration of, Lea, iv, 246.

solutions of metallic, Lea, vii, 343.

and alkali-metals, double halides of, Wells and Wheeler, iv, 155.

Sodium, preservation, Rosenfeld, ii, 70.

Sodium-amine, etc., Joannis, i, 515.

Solubility, law of, applied to solutions of salts, Linebarger, ix, 48.

Solution and pseudo-solution, Lin-
CHEMISTRY—
Spectrum given by nickel-carbonyl, Living and Dewar, vi, 393.
Stannic sulphide, Schmidt, ix, 149.
Strontium, separation from calcium, Browning, iii, 50, 386; iv, 462.
Sulphide solutions, physical constitutions, Picton, iii, 332.
Sulphur, new modifications, Engel, ii, 509.
Sulphuryl peroxide, Traube, ii, 940.
Tartar emetic, standard solutions, Graeber, vi, 206.
Tartaric acid, sensitive reaction for, Mohler, ii, 420.
Telluric acid, iodometric method for the estimation, Gooch and Howard, viii, 375.
Tellurium, double halides of, with potassium, rubidium and cesium, Wheeler, v, 297.
Tetrazotil acid and derivatives, Lossen, vi, 458.
Tin tetrachloride and tetrabromide, Lorenz, l, 500.
Titanic acid in soils, Dunnington, ii, 491.
Tungstons oxides, Headden, v, 280.
Urea from albumin, Drechsel, l, 154.
Vapor-densities, at low temperatures, Krane and Meyer, l, 323; determinations, Lunge and Neuberg, i, 426.
Vapor-presures, determination, Charpy, i, 323; of solutions of sulphur and phosphorus, Guglielmo, vii, 232.
Water, composition of, by volume, Scott, vii, 316; mass-composition, Dittmar and Henderson, vi, 473.
Zinc, action on dilute sulphuric acid, Prellinger, l, 68.
Chemist, American Association of, l, 387.
Choffnt, P., geol. survey of Portugal, vii, 320.
Chromo-photography, Marey, vi, 72, 396.
Clark, W. B., geology and physical features of Maryland, vii, 320.
Clarke, F. W., constitution of certain micas, vermiculites and chlorites, l, 242; Tschermak's theory of the chlorite group, iii, 190; constitution of certain micas and chlorites, iii, 378; constitution of pillilite and mordenite, iv, 101; anorthite and epidote, viii, 429; zeolites, viii, 187; jade-like garnet from California, l, 76.
Clarke, J. M., Clymenia of western New York, iii, 57; genus Acidaspis, iii, 158; list of species of the Oriskany fauna N. Y., iv, 411; study of the brachiopoda, vii, 71.
Claypole, Palaeaspid of, iv, 423.
Clayton, H. H., weather periods, vii, 293.
Clemens, C. F., determination of selenious acid by potassium permanganate, l, 51.
Clinton iron ore, Smyth, iii, 487.
Clouland, Ley, ix, 168.
Cloudy condensation, colors of, Barus, vi, 86.
Cobalt-solutions, color, Étard, iii, 431.
Cohen, E., Meteoritenkunde, ix, 324.
Coleman, A. P., antholite, Elzivir, Ontario, viii, 281.
Colles, G. W., Jr., distance of the stars by Doppler's principle, v, 259.
Collin, Governmental maps, vii, 454.
Colloidal solutions, Lineburger, iii, 218.
Color, intensities of lights of different, Mayer, vi, 1.
of compounds and their chemical constitution, Schüttze, iv, 392.
of hydrogen peroxide, ozone, Spring, l, 343.
photography, Lippmann, iv, 75, 490, v, 69; Newhaus, ix, 499; Vogel, iv, 423; Wiener, l, 417.
relations of atoms, ions and molecules, Lea, ix, 357.
of solutions of salts as affected by the concentration of the ions, Lineburger, iv, 416.
system, Rodd, iv, 263.
Colorado Scientific Society, Proceedings, iii, 541.
Colors of cloudy condensation, Barns, v, 150, 528.
Conets, capture of, by planets, Newton, ii, 183, 489.
Compressibility and dilatation of gases, Amagat, l, 153; hydrogen, etc., i, 512.
Comstock, C. R., value of the meter in inches, vi, 74.
Comstock, G. C., secular variation of latitudes, ii, 470.
Concave gratings, asymmetry in, Rydberg, v, 350.
Conductivity of rocks for heat, Kelvin and Murray, l, 419; Peirce and Willson, l, 490. See under Electric.
Connecticut, wooded area, map, 1, 431.
Conrad's works, republication, v, 385.
Constant of aberration, Preston, vii, 242.
Contact maker, Bedell, Wagner and Mills, vii, 77.
Conwentz, H., monographie der baltischen Bernsteinbaume, i, 350; Untersuchungen über fossile Holzer Schwedens, iv, 260; vii, 320.
Copley medal, i, 258.
Copper smelting, Peters, iii, 167.
Coral reef of East Florida, Shaler, iii, 153; reefs of the West Indies, Agassiz, v, 78, 358.
Cordillere von Cornu, how blanched seedlings may be saved, v, 359.
Cornu, how blanched seedlings may be saved, v, 359.
Corona, solar, Bigelow, i, 1.
Corsica, Bonaparte, 1.
Cotman. E., phonics of auditoriums, i.
Crystallography, i.
Crosby. v.
Crehore, A. C., effects of
Crawford, J. J., report on
Cramer, F., rock-fracture at Combined Locks Mill, Appleton, Wis., i, 432.
Crawford Library, Royal Observatory, Edinburgh, catalogue of, i, 444.
Crehore, A. C., effects of self-induction and distributed static capacity in a conductor, iv, 389; work on alternating currents, v, 485.
Crombie, J. M., lichens found in Britain, viii, 77.
Crookes, W., genesis of the elements, i, 429; select methods of chemical analysis, viii, 425; spectrum of helium, i, 302.
Cross, W. O., composition of till or bowlder clay, ii, 259; Geology of Boston basin, vii, 79; fossil shells in the drumlins of the Boston basin, viii, 486.
Cross, W., alunite and diaspore from the Rosita Hills, Colorado, i, 488; post-Laramie deposits of Colorado, iv, 19; new occurrence of pillolite, iv, 90; igneous rocks of Mexico, v, 119; laccolithic Mt. groups of Colorado, Utah and Arizona, i, 74.
Crystalline liquida. Lehmann, i, 428.
Crystallization, light emitted during, Bandrowski, ix, 468.
Crystallography, N. Story-Maskelyne, i, 507.
Cutler, E., phonics of auditoriums, ii, 463; key note of auditoriums, i, 449.

D
D'Achiardi, G., Tourmaline of Elba, vii, 145.
Dale, T. N., the Greylock synclinorium, ii, 347; plicated cleavage-foliation, iii, 317.
Dall, W. H., Correlation papers, Neocene, v, 351; Tertiary mollusks in Florida, v, 441; subtropical Miocene fauna in Arctic Siberia, vi, 390; Miocene and Pliocene of Martha's Vineyard, viii, 296.
Dallmeyer, new lens, v, 158.
Dane, L. L., elms and other trees of Massachusetts, i, 254.
Dana, E. S., System of Mineralogy, iii, 539; Catalogue of American Mineral Localities, v, 441; Minerals and how to study them, i, 274.
Dana, J. D., Long Island Sound in the Quaternary Era, erratum, i, 161.
non-volcanic igneous ejections and the Four Rocks of New Haven, ii, 79; Percival's map of the trap belts of central Connecticut, and the upturning of the sandstone, ii, 439.
subdivisions in Archean history, iii, 454.
Jura-trias trap of New Haven region, iv, 105.
New England and the Upper Mississippi basin in the Glacial period, vi, 327.
derivation and homologies of articulates, vii, 325.
notice of Manual of Geology, ix, 72, 161; biographical sketch of, ix, 329.
Daniell, A., Principles of Physics, ix, 472.
Danner, E. W., separation of antimony from arsenic, ii, 308; interaction of potassium permanganate and sulphuric acid, iv, 301.
Darton, N. H., geology of the Florida phosphate deposits, i, 102; record of deep well at Lake Worth, Florida, i, 105; fossils in the Archean rocks of Central Virginia, iv, 50; Ooneonta and Chemung formations in eastern central New York, v, 203; Magothy formation of Maryland, v, 407; Cenozoic history of Eastern Maryland and Virginia, vi, 305; Shawangunk Mtn., vii, 482; newly discovered dike at DeWitt, N. Y., ix, 456.
Darwin, les Émules de, Quatrefages, vii, 159.
Darwin, F., Practical Physiology of Plants, ix, 77.
Daubrée, A., experimental researches, iii, 73; work on Experimental Geology, iv, 492.
Davenport, C. B., Urnatella gracilis, vi, 75.

Davis, W. M., fossiliferous black shale of Connecticut, ii, 72; Connecticut Triassic, vii, 136; Governmental maps, vii, 484.

Davison, C., earthquakes in Great Kentucky, iv, 131.

Des Cloiseaux, J. F. N., chiastolite from Portugal, iv, 79.

DeLaunay, L., Traité des Gîtes Miocènes, i, 136; elevation of the Rocky Mt. range in British America since the Cretaceous, ix, 403.

Dawson, J. F., burrows and tracks of invertebrate animals, i, 245; early Cretaceous flora in Canada and the United States, v, 439; recent discussions in geology, vii, 135; Canadian Ice Age, vii, 146.

Day, D. T., Mineral Resources of the U. S., iv, 490; vi, 75; ix, 73.

Decimal system of the seventeenth century, Gore, i, 22.

Deep well at Lake Worth, Florida, i, 105.

De Fodor, E., Die Elektrischen Verbrauchsmesser, i, 431.

De Launay, L., Traité des Gîtes Mésauros et Météallières, vi, 309.

Delgado, J. F. N., chiastolite from Portugal, iv, 79.

Deming, catalogue of radiant shooting stars, i, 75.

Denning, W. P., telescopic work for starlight evenings, ii, 178.

Density of water varied with the temperature, Mendeléeff, iii, 239.

Denudation in the Egyptian desert, Welther, ii, 177.

Derby, O. A., xenotime as an accessory element in rocks, i, 308; magnetite ore districts of Sao Paulo, Brazil, i, 311, 522; nepheline rocks in Brazil, v, 74; Cañon Diablo meteorite, ix, 101.

Des Cloiseaux, A., Manuel de Mineralogie, vii, 73.

Diatomaceae, deposit of, Edwards, v, 383.

Dictionary, English-German and German-English, Flügel, iii, 542.

Dielectric bodies, Le Graetz and Fomm, viii, 428.

constant and conductivity, Bouty, iii, 482; constants, measurement of, Lecher, i, 242.

Diller, J. S., mica-peridotite from Kentucky, iv, 286; geology of the Taylorsville region, California, iv, 380; Tertiary revolution in the topography of the Pacific coast, vi, 74; aniferous gravel of lacustrine origin, Taylorsville, Calif., vi, 388; Shasta-Chico series, vii, 141; Devonian rocks in California, vii, 416.

Ditte, A., Lesquons sur les Météaux, ii, 258; iii, 305.

Documents, Study of, Frazer, ix, 327.

Dodge, F. S., Kilauea, August, 1892, v, 241; viii, 78.

Dodge, R. E., pleistocene fossils, Winthrop, Mass., vii, 100.

Dodge, W. W., Upper Silurian strata near Penticosot Bay, Me., iii, 412.

Doolter, C., Chemische Mineralogie, i, 441.

Douvillé, Panama geology, v, 74.

Duane, W., velocity of electric waves, ix, 297; i, 104.

Dunnington, F. P., titanic acid in soils, etc., ii, 491.

Dynamics, Glazebrook, ix, 484.

Eakle, A. S., so-called schneebergite, ii, 244.

Eakins, L. G., astrophyllite and tschekkite, ii, 34; new occurrence of ptillolite, iv, 96; analysis of xenotime, vi, 256; new meteorite from Hamblen Co., Tenn., vi, 283, 482.

Eakle, A. S., so-called schneebergite, i, 244.

earthquake, the great Japan, 1891, Milne and Burton, iv, 80.

in Great Britain, 1890, Davison, ii, 512.

Eaton, D. C., notice of Letters of Asa Gray, vi, 482; obituary notice of, i, 184.

Eccentricity of a graduated circle with one vernier, Wadsworth, vii, 378.
Echinoderms of Northeastern America, Verrill, ix, 127, 199.
Eclipses of the sun, total, Todd, vii, 76.
Edwards, A. M., intestinal earths of the Pacific coast, ii, 369; Hudson River, "Flord," iii, 182; deposit of diatomaceous, v, 385; discoliths in clay beds, v, 527; Tertiary clay on Long Island, N. Y., i, 270; ornithichnites from the Newark sandstone, N. J., i, 346.
Egleston, T., Catalogue of minerals and synonyms, ii, 434.
Elastic lengthening, law of, Thompson, iii, 32; stress-strain function, finite, Becker, vi, 337.
Electric arc, alternating, Nichols, i, 1. aureole, Lehmann, i, 418.
Electric, cell, a one-volt standard, Carhart, vi, 60.
charges, loss of, in diffuse light and in darkness, Brany, v, 323; potential of, Heydneiler, v, 350.
condition of the air in high altitudes, vii, 69.
conductivity of absolutely pure water, viii, 599; of flames, vii, 314; of gases, Baum, viii, 421; of rock magmas, Barus and Lodding, iv, 242.
current, force exerted by, Mooreland, v, 392.
currents of high frequency, Swinton, v, 330.
discharge, action on gases and vapors, Ludeking, iv, 254.
discharges and coronoidal, Pupin, iii, 463.
gyroscope, Trouvé, i, 156.
measurement, units adopted by National Academy, ix, 316.
meters, de Fodor, i, 431.
oscillations, Toepfer, iv, 423; Zehnder, iv, 498; damping of, Bjerknes, ii, 511; frequency of, Patterson and Arnold, vi, 359; on iron wires, Trowbridge, ii, 233; of low frequency and their resonance, Pupin, v, 325, 430, 503; luminous effects, Ebert, vii, 427; of very small wave-lengths, Righi, vi, 396.
properties of semi-permeable walls, Ostwald, i, 324.
radiations in copper fillings, Craft, vii, 77.
refractor of liquids, Drude, i, 418.
resistance of allotropic silver, Overbeck, iv, 424; measured by alternating currents, Kohlrbausch, vi, 150; of the human body, von Fréy, iv, 76; measurement of, Price, viii, 425; of metals, Dewar and Fleming, iv, 499; standards of low, Jones, vi, 479.
resonance, Bjerknes, i, 71; apparatus, Righi, vii, 236.
units, of National Academy, ix, 316.
waves, Hertz, vii, 244; Lecher, i, 150, iii, 432.
absorption of, Klemeneic, vii, 77; absorption power of metals for the energy of, iv, 498.
double refraction, Mack, ix, 316; Lebedew, i, 419.
at the extremity of a linear conductor, reflection of, Birkeland, vi, 73.
Hertz on the propagation of, iii, 535.
in ice, Blondiot, ix, 59; double refraction of, Klemeneck, i, 418.
in insulating fluids, velocity, i, 515.
in open circuit, Elms, i, 156.
interference of, v, 159, vi, 397; on iron wires, Trowbridge, vii, 307.
photographic action in, i, 242.
refraction by alcohol, Ellinger, v, 254.
velocity, Avons and Rubens, ii, 511; Sarasin and de la Rive, vi, 301; Trowbridge and Duane, ix, 297; i, 104.
wave lengths, Wurtz, i, 334.
in wires, theory, Elms, vi, 397.
and light waves, Bjerknes, vi, 72.
Electricity, Chapters on, Sheldon, ii, 511.
discharge through exhausted tubes, Thompson, ii, 426.
influence of the character of metallic points on discharges of, Wurtz, v, 528.
on iron wires, wave lengths, St. John, viii, 511.
source of frictional, Christiansen, viii, 538.
of waterfalls, Lenard, iv, 428.
and Light, Maxwell's Theory, Boltzmann, iii, 536.
and Magnetism, Emtage, ii, 510.
iii, 155; S. P. Thompson, ix, 158.
Electrification and cloud condensation, Aitken, iv, 254.
Electro-chemical Analysis, Smith, i, 69.
effects due to magnetism, Squier, v, 448.
equivalent of copper, Vanni, ii, 511; Beach, vi, 81.
Electromagnet, Thompson, i, 327.
Electro-magnetic theory, Pupin, i, 326; of color dispersion, Helmholz, v, 454.

units, ratio of, to electrostatic, Thomson and Searle, ii, 427; Abraham, iv, 274.

Electrolysis, see Chemistry.

Electrolytic generation of gas, Chabry, ii, 511.

Electrometer, capillary, Whitmore, iv, 64.

Electrometers, new, Bjerknes, vi, 72; small, Boys, ii, 343.

Elliot, D. G., inheritance of acquired characters, iii, 338.

Emerson, B. K., Holyoke and Deerfield trap sheets, iii, 140.

Emtage, Electricity and Matter, connection between, vi, 155.

Engelhardt, H., Tertiärpflanzen von Chile, iii, 335: Miocene plants of northern Bohemia, iii, 336.

Engelmann, die natürlichen Pflanzenfamilien, vi, 76.

Emgler, A., die natürlichen Pflanzenfamilien, Nos. 69, 99, iii, 162, 1, 78.

Equipotential lines, Lommel, v, 435; and magnetic force-lines, von Lommel, vi, 479.

Ether and matter, connection between, Lodge, vi, 375.

Ethnology and Archæology, Journal of, Fewkes, i, 521.

Ettingshausen, Ontogenie und Phylogenie der Pflanzen, i, 332; fossile florn von Schlägig, i, 331; Australsche Floren-element in Europa, i, 332.

Evans, P. S., Jr., reduction of selenic acid by hydrochloric acid, i, 400.

F

Farrington, O. C., crystallized azurite from Arizona, i, 300; chemical composition of iolite, iii, 13.

Ferrell, W., measures of the intensity of solar radiation, i, 378.

Ferrier, W. F., harmatome from Port Arthur, i, 161; tungsten minerals in Canada, ii, 347.

Ferry, E. S., persistence of vision, iv, 192.

Fisher, on rock fusion, criticism of, Barus, vi, 140.

Fisher's new hypothesis, Becker, vi, 187.

Fisher, O., rigidity not to be relied upon in estimating the earth's age, v, 464.

Fishing banks from Cape Cod to Newfoundland, Upham, vii, 123.

Flame spectra at high temperature, Hartley, vi, 148; Cochin, vi, 302.

Flames, petroleum, illuminating power, Mayer, i, 52; suspended matter in, Stokes, iii, 331.

Flammarion, La Planète Mars, v, 77.

Fletcher, Mexican meteorites, i, 79; Optical Indicatrix, v, 355: Study of Rocks, i, 426.

Florida, Eocene and Miocene, Foerste, vii, 41.

Neocene of, Dall and Harris, v, 353.

phosphate fields, Darton, i, 102; Johnson, v, 497.

Reef, Agassiz, ix, 154.

Tertiary mollusks of, Dall, v, 441.

Flying experiments, Lilienthal, vii, 479.

machine, Maxim's, ii, 342; discussion relating to, Langley, ii, 437, vii, 41.

Foam, Lord Rayleigh, i, 70.

Foerste, A. F., Clinton oolitic iron ores, i, 28; Chipola Miocene of Bainbridge, Ga., and Alum bluff, Fla., vi, 244; fossil localities in the early Paleozoics of Pa., N. J., and Vermont, vi, 435; Eocene and Miocene of Georgia and Florida, viii, 41.

Foord, A. H., fossil cephalopoda in the British Museum, Pt. ii, i, 435.

Foote, A. E., meteoric iron of Cahoon Diablo, ii, 413; meteoric iron from Garrett Co., Md., iii, 64; meteoric stone of Bath, South Dakota, v, 64.

Foote, W. M., leadhillsite pseudomorphs in Missouri, i, 99; northuplite, i, 480.

Forest influences, vi, 160.
Forestry, Outlines of, Houston, vi, 80.
Foshay, P. M., glacier scratches in western Pennsylvania, ii, 172.
Fossil, see GEOLOGY.
Fouqué, F., feldspaths des roches volcaniques, ix, 477.
Fourier's Series and Spherical etc. Harmonics, Byerly, vii, 160.
Frank, Lehrbuch der Botanik, ix, 75.
Frazer, Tables for the determination of minerals, ii, 77; Study of Documents, ix, 327.
Frémy, E., Synthèse du Rubis, ii, 432.
French Academy, Botanical prizes, v, 436.
FrBrty,
Ganot's Physics, 14th edition, v, 436.
Gareth, F., Synthèse du Rubis, ii, 432.
Fourier's Series and Spherical etc. Harmonics, Byerly, vii, 160.
Friedel, C., Cours de Mineralogie, vii, 145.
FrBrty,
Frost, E. B., treatise on astronomical spectroscopy, translation, viii, 237.
Fuchs, E., Traité des Gites Minéraux et Métallifères, vi, 309.
Geinitz, H. B., Lycopodiaceen aus der Steinkohlen Formation, etc., i, 73.
Fusion, relation of melting point to, Barus, iii, 56.

G
Gage, A. P., Principles of Physics, 1, 265.
Gain, E., influence of moisture on vegetation, v, 356.
Galvanometer used with thermopile, Merritt, i, 417.
sensitive, DuBois and Rubens, v, 350; Weik, ix, 470.
Gannett, H., dictionary of altitudes in the United States, iv, 263.
Ganot's Physics, 14th edition, v, 436.
Gas analysis, Hempel, iii, 334.
electrolytigenetration of, Chabry, ii, 511.
jetz under pressure, Wood, i, 477.
Gases, emission, Paschen, vii, 236.
Geikie, A., history of volcanic action in the British Isles, ii, 178; iv, 76; geol. map of Scotland, v, 74.
Geikie, J., Fragments of Earth Lore, vii, 147; glacial succession in Europe, ix, 62.
Geinitz, H. B., Lycopodiaceen aus der Steinkohlen Formation, etc., i, 73.
Gelatine slides for lantern projections, Waggener, v, 78.
Genth, F. A., contributions to mineralogy, No. 50, i, 394; No. 51, i, 401; No. 52, iii, 184; No. 54, iv, 381; pennellite, a new species, iv, 269; "angleite" associated with bolelite, v, 32.
Geological Annual, 1889, Carez and Douville, ii, 76; iii, 436.
Atlas of the U. S., Powell, viii, 170; i, 504.
Congress at Chicago, vi, 306.
map of Baltimore, Williams, v, 73; Chattanooga, Tenn., Hayes, v, 163; Scotland, Geikie, i, 74; New York State, 1, 505.
GEOLOGICAL REPORTS AND SURVEYS—
Alabama, i, 330, 436; ii, 515; Bulletin, No. 3, iv, 497; No. 4, v, 163; 1898, vii, 319; 1894, ix, 72.
Arkansas, 1889, i, 435; 1888, ii, 347; 1890, iii, 139; 1894, iv, 392; 1892, iv, 428; 1891, v, 73.
Canada, 1888-89, iii, 77, ix, 248; 1892-93, i, 347.
Georgia, 1890-91, ii, 515, vii, 78; marbles, i, 350.
Illinois, vol. viii, Worthen, i, 159.
Iowa, iv, 500; 1893, vi, 397; 1898, ix, 476.
Kentucky, i, 435; 1890, 1891, iv, 78.
Michigan, 1891, 1892, v, 354, 1, 71.
Minnesota, 1889, i, 246; 1890, v, 73; vol. iii, vi, 239; 1893, ix, 241; 1894, i, 72.
Missouri, Bulletin Nos. 2, 3, i, 248; No. 4, i, 435; No. 5, ii, 515; 1892, v, 354; vii, 147; vols. vii, 1, 347.
New Jersey, 1889, i, 248; 1890, ii, 70; 1891, iv, 77; 1892, vi, 308; 1892, vii, 79; 1894, ix, 475.
Ohio, vol. vii, 240.
Pennsylvania, 1890, i, 248; iii, 536; v, 73.
Portugal, Choffat, vii, 320.
Texas, first annual report, 1889, i, 320, 436; second, 1890, i, 430; third, 1891, iv, 427; 1893, v, 354; vi, 307; fourth, 1892, vii, 319.
United States, ninth annual report, 1887-88, i, 157; tenth, 1888-89, iii, 155; vol. xi, vi, 308; viii, 70; fourteenth, 1892-93, 1, 433.
Geological Society of America, i, 160; meeting at Baltimore, ix, 155; Boston, vii, 135; Brooklyn, viii, 348; Madison, vi, 302; Rochester, iv, 81, 333; Springfield, 1, 348; Washington, ii, 77, 344.
of London, ix, 248.
of Washington, v, 524.

Geological, Roth, i, 249.

Geologists, international congress, i, 71, 257; bibliography, iii, 71; meeting at Washington, ii, 78, 343; Zurich, vii, 318, viii, 79, 433.

U. S. Association of Government, ix, 89, 249.

Annals of British, viii, 78.

Journal of, vii, 344.

Of Canada, chemical contributions, Diller, vi, 199.

Of India, As historical Science, Walcott, ix, 146.

Of Canada, chemical contributions, Diller, vi, 199.

Practical, Krahnmann, v, 325.

California, veins of, Lindgren, vi, 513.

Pennsylvania, Lesley, iii, 536.

Walcott, ix, 146.

Beecher, i, 343.

Bibliography of Paleozoic Crustacea, from 1698 to 1899, Vogdes, i, 436.

Artesian boring in Texas, Hill, iv, 406.

As historical Science, Walther, ix, 71.

Of India, Medlicott and Blanford, ix, 164.

Algae, fossil calcareous, Rothpletz, iii, 137.

Anchisaurus, restoration of, Marsh, v, 169.

Anthracite, Pennsylvania, Stevens, vi, 302.

Aphide, Tertiary, Scudder, vii, 481.

Appalachian faulting, Willis and Hayes, vii, 159.

Archasian of Central Virginia, fossils from, Davit, iv, 30.

history, subdivisions in, Dana, iii, 454.

limestone of N. Jersey, ii, 70.

rocks of Missouri, origin of, Haworth, ii, 515.

in northern Michigan, Wadhurst, v, 72.

Artesian boring in Texas, Hill, iv, 406.

Asphaltn of Utah and Colorado, Stone, ii, 148; of Trinidad, Peckham, i, 35.
GEOLGY—
Carboniferous in France, flora of,
Zeiller, ii, 75.
—fossils. Norfolk Co., basin,
Woodworth, viii, 145.
—insects of France, Scudder,
vi, 90.
—strata of Shasta Co., Calif.,
Smith, viii, 530.
“Catskill,” use of the name,
Stevenson, vi, 330.
Cenozoic, history of
East Rid. and
Va., Darton, vi, 305.
Ceratops beds of Wyoming, Hatcher,
v, 135.
Ceratopsidae of North America,
Marsh, i, 167.
Champlain, subsidellce
and
re-elevation
of the St. Lawrence River
basin, Upham, ix, 1.
Chains on drumlins, Barton, viii,
349.
Cherts of Missouri, Hovey, viii,
401.
Cheyenne sandstone, dicotyledon-
ous flora, Hill, ix, 413.
Chiastolite in fossiliferous
datas
of Portugal, Delgado, iv.
Claosanrus, brain
and
skull of,
Marsh, iii, 83.
Ceratoianrui, restorations,
Marsh, iv, 343.
Cleavage-foliation, Dale, iii.
317.
Clymenia of Western
Kew
Tork.
Clarke, iii, 57.
Coal deposits of Missouri,
Winslow, iii, 435.
Coal measures of Arkansas, Smith,
vii, 482.
of Kansas, footprints, Marsh,
vii, 81; stratigraphy, Keyes, 1,
299; Havworth, i, 452.
of Missouri, Winslow, iii, 435.
Comanche series in Kansas, Okla-
ahoma and New Mexico, Hill, i,
205.
Conanicut Island, R. I., geology,
Pirsson, vi, 363.
Connecticut under Triassic, Davis
and Griswold, vii, 136.
Contact-metamorphism, formation
of graphite in, ii, 514.
Coral Islands off New Guinea, up-
raised, Macgregor, iv, 256.
Coryphodon, restoration, Marsh, vi,
321.
Cretaceous beds of British Amer-
icus, upturned, Dawson, iii,
483.
bird allied to Hesperornis,
Marsh, v, 81.
flora of Long Island, Hollick,
vii, 402.
Cretaceous floras in Canada and the
U. S., correlation of early, Daw-
son, v, 439.
—formation of Mexico, Hill, v,
307.
—fossils of Syria, Whitfield, iii,
159.
—fossils of Fuveau, G. de Sa-
porta, iii, 337.
—mammalia, Pt. III, Marsh, iii,
249.
in Minnesota, Winchell, vii,
146; of northwestern Montana,
Wood, iv, 401.
palaeontology of, on Staten Is.,
Hollick, iv, 259.
Crinoidea of Gotland, Bather, vii,
482.
Crinoids, perisomic plates of, Keyes,
i, 247.
Cuba, Tertiary and later history,
Hill, vii, 196.
Cycadene remains, Capellini and
Solms-Laubach, iv, 356.
Diamonelix of the Lacustrine Mi-
ocene, ix, 339.
Deformation of Algonquin bench
and birth of Lake Huron, Spen-
cer, i, 12; of Lundy bench and
birth of Lake Erie, Spencer, vii,
207.
Devonian in the Appalachians,
Hayes, vii, 237.
—Bohemian and Eifilian divi-
sions, ix, 238.
—fauna of southern England,
Whidbourne, vii, 402.
—fishes of Canada, Woodward,
v, 73.
—fossils, Whiteaves, iv, 429; in
the Carboniferous, Williams, ix,
94, 160.
—rocks in California, Diller and
Schuchert, vii, 416.
—system of eastern Pennsyl-
vania, Prosser, iv, 210.
Devonische Pflanzen aus dem Don-
etz Becken, Schmalhausen, ix,
478.
Dinosauria, Triassic, Marsh, iii,
543.
Dinosaurs, classification, Marsh, 1,
483.
—restoration of some European,
Marsh, 1, 407.
—tracks of, in New Jersey,
Woodworth, 1, 481.
Diplograptus, graptolitic genus,
Ruedemann, ix, 453.
Diascliths in clay beds, Edwards, v,
538.
GEOLoGY—
Dolomite-making, Högbom, ix, 427;
Klement, ix, 436.
Drainage features of Upper Ohio basin. Chamberlin and Leverett, vii, 347; correction, vii, 483.
Drift bowlders in Central New York, Brigham, ix, 213.
extra-moraine of New Jersey, Wright, vi, 304.
Earth Lore, fragments of, Geikie, iv.
Feldspaths des roches volcaniques.
Earth's age, King, v.
Fiord of the Hudson River, Edenka district, geology.
Eocene and Chattahoochee deposits in Central Drainage Basin, Wright, vi, 304.
Dolomite-making, Pumpelly, vi, 445.
Fauna at the
Eutheria.
Folds and faults, Florida phosph. deposits, Florida, Foerster, viii.
Istoria Italica. B.-Sonninahol, v.
Eocene and Chattahoochee Miocene in Georgia, lime break between, Pumpelly, vi, 445.
mammals, new order, Marsh, iii, 147.
of Maryland and Virginia, Harris, vi, 301.
and Miocene of Georgia and Florida, Foerste, viii, 41.
of the U. S., Clark, iii, 539.
Eureka district, geology, Hague, v, 161.
Extra-moraine fringe in East Pennsylvania, Williams, vii, 34.
Fauna at the base of the Burlington limestone in Missouri, Keyes, iv, 447.
of the St. John Group, Matthew, ii, 73; viii, 72.
Feldspaths des roches volcaniques, Fouqué, ix, 477.
Fior d of the Hudson River, Edwards, iii, 182.
Flora of the Great Falls Coal Field, Montana, Newberry, i, 191.
tertiary flora of Messincelli and Squinabol, v, 438.
Florida phosph. deposits, Darton, i, 102.
Folds and faults, underthrust, Smith, v, 305.
Fossil Botany, Solm-Laubach, iii, 537.
Cephalopoda in the British Museum, Pt. II, Foord, i, 438.
of the Coal measures, Williamson, v, 437.
faunas at Springfield, Missouri, Weller, ix, 185.
flora of the Bozeman coal field, Knowlton, iv, 594; von Schöneck, Ettingshausen, i, 331.
insects of North America, Scudder, i, 330; of the world, index to known, Scudder, ii, 516; iii, 244.
Fossil mammals, North American, v, 159.
plant remains from Argentine R., Szajnocha, iii, 538.
plants of the Coal measures, Williamson, i, 437; in glaciated regions, Nathorst, iv, 336; plants as tests of climate, Seward, v, 438.
shells in the drumlins of the Boston basin, Crosby and Ballard, viii, 486.
wood of Sweden, Conwentz, vii, 320.
Fossils, Cretaceous of Syria, Whitfield, iii, 139; post-Glacial, near Boston, Upham, iii, 201; St. Peter's sandstone, Sarderson, iii, 539.
Fulgurite, Maine, Bayley, iii, 327.
Galveston, deep well, Dumble and Harris, vi, 85.
Geologic time, discussed, King, v, 1; Upham, v, 209; Fisher, v, 454; Walcott, vi, 307.
Geological classifications, dual nomenclature, Williams, vii, 143.
Geology of Angel Island, Ransome, ix, 73.
recent discussions, Dawson, vii, 19.
of the Taylorville region, California, Diller, iv, 330.
glaciers, see Glacial, Glaciation, Glaciers.
Gold deposit at Pine Hill, California, Lindgren, iv, 92.
fields of the So. Appalachians, Becker, i, 425.
Grand River, Labrador, Cary, ii, 428; 516.
Great Lakes, changes of level in the region of, Taylor, ix, 69.
Green Mts. main axis, Whittle, vii, 347.
Greylock synclinorium, Dale, ii, 347.
Gulf of Mexico as a measure of isostasy, McGee, iv, 177.
Harrisburg terraces, Bashore, vii, 98.
Heiderberg limestone of Mt. Bob, Harris, iii, 236.
Hematite and martite iron ores in Mexico, Hill, v, 111.
High level shores of the Great Lakes, Spencer, i, 201.
Holocene of Newberry, ventral plates, Williams, vi, 285.
Horned Artiodactyle, Marsh, i, 81.
Horses, recent polydactyle, Marsh, iii, 339.
Geology—

Huronian, structural relations, Pumphrey and Van Hise, iii, 224; of L. Huron, Barlow, iv, 236.

Hyolithes and conularies, Swedish Paleozoic, Hohn, vii, 321.

Ice age as one glacial epoch, Upham, v, 70.

Ice ages, recurrence, Hughes, ix, 164.

Ice limit, southern, in East Pennsylvania, Williams, ix, 174.

Indian Territory ice age as one glacial epoch, Upham, v, 70.

Jura and Trias. Taylorville.

Jura-Trias, see Triassic

Jurassic, Lafayette formation.

Lacustrine Tertiary formations, Lacritolite.

Iron ores. Clinton oolitic, Foerste, i, 245.

Iron formation, Clinton oolitic, Foerste, i, 38.

genesis. Kimball, ii, 231.

Jura-Trias, see Triassic

Jura and Trias, Taylorville, California, Hyatt, iv, 330; fossils of the West, States, Hyatt, vii, 142; of Shasta Co., Cal., Smith, viii, 330.

Laccolitic Mt. groups of Colorado, Utah and Arizona. Cross, i, 74.

Lacustrine Tertiary formations, Scott, vii, 139.

Lafayette formation, Hilgard, iii, 389; McGee, v, 163.

Lake basins, formation by wind, Gilbert, ix, 159.

Bonneville, Gilbert, i, 327.

Superior stratigraphy, Van Hise, i, 117.

Laramie formation, new reptiles, Marsh, iii, 449.

and Livingston formation in Montana, Weed, vii, 404.

Laurentian, Adams, ix, 159; 1, 58; and Huronian of Lake Huron, relations of, Barlow, iv, 286.

Long Island Sound in the Quaternary Era, erratum, i, 161.

Lycopodiaceen, etc., Geinitz, i, 73.

Magotthy formation of Maryland, Darton, v, 407.

Mammalia in North America, Osborn, vi, 379, 448.

Mammals of Minnesota, Herrick, vi, 320.

Manganese beds of Arkansas, age, Williams, viii, 325.

Mannington oil-field, White, iv, 78.

Marine shell fragments near Boston, Upham, vii, 298.

Marquette iron region, geology, Brooks, i, 100.

Geology—

Maryland, Geology and Physical features, Williams and Clark, vii, 320.

Mastodon Americanus, Cuvier, restorations, Marsh, iv, 350.

Mesozoic vertebrate fossils, Marsh, iv, 171.

Mexico, geology, Castillo, vii, 78.

fossils, Aquilera, vii, 78.

Miocene artiodactyles, Marsh, viii, 173.

of Bainbridge, Ga., etc., Foerste, vi, 244.

fauna in Siberia, Dall, vi, 399.

mammal, new, Marsh, vii, 409; mammal, Marsh, vi, 407.

plants of Bohemia, Engelhardt, iii, 386.

and Pliocene of Martha's Vineyard, Dall, viii, 396.

tapir, Marsh, viii, 348.

Miopippus beds, eastern, Marsh, viii, 91.

Missouri coal-deposits, Winslow, iii, 435.

Monte Somma, ejected blocks of, Johnston-Lavis, vii, 321.

Mormine, central Massachusetts, Tarr, iii, 141.

Moraines of Lake Erie, Leverett, iii, 281.

correlation of New York, with raised beaches of Lake Erie, Leverett, i, 1.

Mount St. Elias, Russell, ii, 171.

Mountain ranges, classification, Upham, iii, 74.

Neocene, Dall and Harris, v, 351.

New England and the Upper Mississippi basin in the Glacial period, Dana, vi, 327.

New Jersey, surface formations of southern, Salisbury, ix, 157.

Niagara and the Great Lakes, Taylor, ix, 349.

Nikitin on the Quaternary deposits of Russia, Wright, v, 459.

Norian of Canada, Adams, vi, 158.

Olonellus in New Jersey, Walcott, vii, 309.

Oneota and Chemung formations in eastern central New York, Darton, v, 293.

Becher and Clarke, iv, 410, 411.

Omnithichnites from the Newark sandstone, N. J., Edwards, i, 946.
Geology—

Ornithopoda of the American Jurassic, Marsh, vii, 85.

Orachita Mt. system, Hill, ii, 111.

Paleaspis, Claypole, iv, 428.

Paleobotany of the Cretaceous formation of Staten Island, Hollick, v, 437.

Paleozoic corallines, Whitfield, ix, 323.

Pleistocene dislocations, of the Phosphate fields of Florida, Pre-Olenellus fauna.

Post-Eocene formations of Alabama, Portage of New York, Prosser, vi, 578.

Phosphates of America. Wyatt, Petroleum, viii, 75.

Permian coal plants, Zeiller.

Paleozoic corallines, Whitfield, ix, 323.

crustacea, bibliography, 1698–1859, Vogdes, i, 486.

fossil localities of Pa., N. J., and Vermont, Poirste, vi, 435.

species of Lindley and Hutton’s Fossil Flora, Kidston, iii, 344.

Permian coal plants, Zeiller, vi, 75.

of Texas, Sturr, iii, 9.

Petroleum, asphaltum and bitumen, Jaccard, i, 509.

natural gas, etc., of west Kentucky, Tann, iv, 78.

Phosphate fields of Florida, Darton, i, 102; Johnson, v, 497.

Phosphates of America, Wyatt, iii, 79.

influence of swamp waters on formation, Reese, iii, 402.

Pithecanthropus erectus, Marsh, ix, 144.

fluvial planes of Pennsylvania, Leverett, ii, 200.

fossils, Whithrop, Mass., Dodge, vii, 100.

history of N. E. Iowa, McGee, v, 71.

and pre-Pleistocene of Mississippi basin, Chamberlin and Salisbury, i, 359.

Portage of New York, Prosser, vi, 212.

Post-Eocene formations of Alabama, Smith, vii, 283.

history of the Hudson River Valley, Merrill, i, 460.

origin, faults of, Matthew, ix, 322.

submergence, central Michigan and the, Mudge, i, 443.

subsidence of the middle Atlantic coast, Lindenkohl, i, 498.

Post-Laramie deposits of Colorado, Cross, iv, 13.

Pre-Cambrian organisms, Cayeux, i, 267.

Pre-Olenellus fauna, Noetling, viii, 509.

Geology—

Protolenus fauna, Matthew, i, 265.

Quaternary carnivores of the Island of Malta, v, 74; deposits of Russia, Nikitin on the, A. A. Wright, v, 350.

era and deposits of flooded rivers, Upham, i, 33.

Quebec City, geology. Ami, iii, 75.

Radiolarians, pre-Cambrian, Cayeux, ix, 322.

Raised reefs of Fernando de Noronha, Ridley, i, 406.

Redrock sandstone of Iowa, Keyes, i, 273.

Reptilian remains from the Triassic of No. California, Merriam, i, 55.

Resin, fossil, Smith, viii, 73.

Rock-fracture at Appleton, Wis., Cramer, i, 482; Reade, i, 489.

Rocky Mt. range in British America, elevation, since the close of the Cretaceous, Dawson, ix, 493; region in Canada, Dawson, ii, 239.

Saganaga syenite, Winchell, i, 386; Selwyn, iii, 319.

Sandstone, columnar, Milne Curran, i, 435.

Secular cooling, and earth straining, Davidson, vii, 480.

Seismic periods, Davison, vii, 155.

Sharon coal of N. E. Ohio, quartz boulder in, Orton, iv, 62.

Shasta-Chico series, Diller, vii, 141.

Shasta region of California, metamorphic series, Smith, i, 346.

Shawangunk Mtn., Darton, vii, 482.

Shear-zone in the Adirondacks, Kemp, iv, 109.

Silicic beds in the Eocene of New Zealand, Hinde and Holmes, iv, 259.

sinter formed by vegetation of hot springs, Weed, i, 138.

Silurian limestone in No. Michigan, Sesman, vii, 178.

sandstone of Keweenaw Pt., Wadsworth, ii, 170.

Lower, fish remains in, Walcott, i, 245; Lamellibranchiata, new, Ulrich, iv, 79; limestone, Tennessee, Shaler, ix, 160.

Silurian, upper strata near Penobscot Bay, Me., Dodge and Beecher, iii, 412.

Soils, origin and nature, Shaler, v, 163.

Sphenophyllum, Newberry, ii, 76.

Steep Rock Lake, Ont., geology, Smyth, ii, 317.

Stegosaurus, restoration of, Marsh, ii, 170.
Geology—
St. John group, fauna of, Matthew, ii, 73; viii, 72.
St. Peter's sandstone, Sarde son, iii, 539.
Submergence of Europe, Prestwich, vii, 146.
Syenite, Sagnagana, Winchell, i, 386; Selwyn, iii, 319.
Syllogue fungorum fossili um, Meschinelh, iv, 335.
Tenuipteris fern and its allies, new, White, v, 490.
Terraces in glaciated regions, origin, Berry, vii, 539.
Tertiary—
Epoch, unity of, Wright, iv, 351.
Triassic of No. California, reptilian remains, Merriam, i, 55.
Connecticut, Davis and Griswold, vii, 196.
Dinosauria, Marsh, iii, 543.
Fossiliferous black shale of Connecticut, Davis and Loper, ii, 72.
Trap rocks of Connecticut, Davis and Loper, ii, 72; of New Haven region, Dana, ii, 79, iv, 165; Percival's map of, and on the mountain-making, Dana, ii, 439.
Triceratops, restoration of, Marsh, i, 339.
Trilobites, appendages of, Walcott, vii, 481; from the lower Helderberg, larval forms, Beecher, vi, 142; of Upper Carboniferous, Kansas, i, 517.
Unio-like shell from the Coal measures, Whitesaves, vii, 146.
Upper Hamilton of New York, Prosser, vi, 212.
Urnatella gracilis, Davenport, vi, 73.
Variation, geological aspects, Gosselet, ix, 473.
Vertebrate fossils as a criterion of age, Marsh, ii, 265, 336.
Volcanic action in the British Isles, history, Kelkie, ii, 178; iv, 76.
rocks, see Rocks.
Volcano, see Kilauea.
Wallula beds, so-called, as a division of the California Cretaceous, Fairbanks, v, 473.
Water of a salt lake on Oahu, anal., ii, 522.
West Indian region, change of level, Stimpson, ix, 321.
Whetstones and novaculites of Arkansas, Griswold, iv, 332.
White limestones, Orange Co., N.Y., age, Kemp and Hollick, vii, 401.
Worms (Lobworms), work of, C. Davison, iii, 162.
Georgia, geol. survey, see Geol. Reports and Surveys.
Geyser, experiments with an artificial, Graham, v, 54.
Gilbert, G. K., Lake Bonneville, i, 327; formation of lake basins by wind, ix, 159.
Glacial drift, diversity, Upham, vii, 358.
epoch, unity of, Wright, iv, 351.
Glacial erosion of New York, Lincoln, vii, 105.

Genesee Lakes, Fairchild, i, 345.

Geology of Great Britain, Lewis, viii, 73.

Lake Agassiz in Manitoba, Upham, ii, 429; Lake St. Lawrence of Upham, Chalmers, ix, 273; lakes in Western New York, Fairchild, ix, 156.

landforms of the margins of the Alps, Mill, ix, 131.

limit in East, Pennsylvania, Williams, ix, 174.

period, continuity of, Wright, vii, 161; diversity of, Chamberlin, v, 171; unity of, Upham, v, 70; epochs of, Upham, ix, 385.

in Iowa, McGee, v, 71; in Russia, Nikitin, v, 456; in New England and Upper Miss., Dana, vi, 327.

phenomena of Newfoundland, etc., Wright, ix, 86, 156; west of Hudson Bay, Tyrrell, ix, 322.

pot-holes in California, Turner, iv, 453.

records in the Newark system questioned, Russell, i, 459.

rock-crushing, iii, 539.

scratches in Pennsylvania, Foshay and Hice, ii, 172.

succession in Europe, Geike on, ix, 62; Hughes, ix, 164.

See also drift, Quaternary, etc., under Geology.

Glaciologist's Magazine, vi, 310.

Glaciation of Asia, Kropotkin, vi, 400.

epeirogenic movements associated with, Upham, vi, 114; astronomical conditions favorable to, Becker, vii, 93; effect on the present fauna of N. A., Scudder, vii, 170; in the Finger-Lake region, N. Y., Lincoln, iv, 290.

Glacier Bay, Alaska, Reid, vi, 365; clays and till near Boston, Crosby, ii, 259.

Glaciers, excavations by, v, 74.

of Mt. St. Elias, Russell, iii, 169; periodic variations in, Forel, iv, 342.

Glass, silvering, Lumière, ix, 470; solubility of, Kohlrausch, iii, 155.

Glazebrook, R. T., Practical Physics, v, 436; Dynamics, ix, 484.

Goldschmidt, V., Index der Krystallformen, i, 253, 441.

Goniometry, spiral, Barus, viii, 1.

Gooch, F. A., determination of antimony, ii, 213; the determination of potassium spectroscopically, ii, 448; estimation of chlorates, ii, 220; separation of antimony from arsenic, ii, 308.

iodometric determination of nitrates, iv, 117; convenient forms of laboratory apparatus, iv, 209; interaction of potassium permanganate and sulphuric acid, iv, 391; rubidium determined by the spectroscope, iv, 392.

determination of iodine in haloid salts by arsenic acid, v, 334.

arsenic with antimony and tin, vii, 392.

detection of alkaline perchlorates, vii, 39; chlorine, viii, 168; reduction of arsenic acid, viii, 216; minute quantities of arsenic in copper, viii, 292; iodometric method for the estimation of telluric acid, viii, 375.

estimation of halogens in mixed silver salts, l, 27; determination of selenious acid by potassium permanganate, l, 51; determination of carbon dioxide, l, 104; reduction of the acids of selenium by hydriodic acid, l, 234; reduction of seabirds with arsenic, l, 400; reduction of selenic acid by hydrochloric acid, l, 402; reduction of selenic acid by potassium bromide in acid solution, l, 402.

Goodale, G. L., botanic gardens in the equatorial belt and south seas, ii, 173, 260, 347, 434, 517; possibilities of economic botany, ii, 271; notice of A. DeCandolle, vi, 236.

Gore, J. H., decimal system of the seventeenth century, l, 22.

Gosselet, geological aspects of variation, ix, 473.

Gotland, Crinoidea of, Bather, vii, 482.

Gould, B. A., address before the American Metrological Society, v, 246.

Governmental maps, use of, Davis, King, and Collin, vii, 484.

Graham, J. C., experiments with an artificial geyser, v, 54.

Gratings, concave, asymmetry in, Rydberg, v, 350.

Gravity, daily variation, Mascart, v, 340.

determinations, use of pendulums, Mendenhall, v, 144; diminution of, with the height, Richarz and Menzel, vii, 400; direction in
the Hawaiian Islands, Preston, v, 216. ix, 271: relation to continental elevation, Mendenhall, ix, 81.
Gray’s Manual of Botany, Watson and Coulter, i, 44.
Groth, P., Index of Mineralogical Literature, 1885-91, v, 442, vi, 312: Physikalische Krystallographie, ix, 74, i, 77.
Hart, T. S., potassium determined and detected spectroscopically, ii, 418.
Hartley, W. N., flame spectra at high temperatures, vi, 148.
Harvard Botanical Museum, ix, 166.
Hatcher, F. H., Introduction to study of Petrology, i, 517.
Hatcher, J. B., Ceratops beds of Wyoming, v, 441.
Hays, C. W., Appalachian faulting, vi, 257; Devonian in the Appalachians, vii, 287.
Hedden, W. P., columbite and tantalite from the Black Hills, i, 89; black rutile, i, 249; phosphates from the Black Hills, i, 415; alloys of tin and iron, iv, 404; stannite from Black Hills, S. D., v, 103; tungstous oxide, v, 280; kehoeite, new phosphate from Lawrence Co., S. D., vi, 22.
Heat, Wright, vi, 301.
Heede, W., a short cycle in weather, v, 237.
Henderson, R., Kiowa and Comanche Indians, v.
Henderson, R., origin of Archean rocks of Missouri, ii, 515; stratigraphy of Kansas coal measures, i, 452.
Henderson, R., Kiowa Co., Kansas, meteorites, iii, 80.
Hepworth, E., origin of Archean rocks of Missouri, ii, 515; stratigraphy of Kansas coal measures, i, 452.
Hektor, B., Anleitung zur Krystalblei- rechnung, vii, 145.
Helmholtz medal, i, 521.
Hemphel, W., methods of gas analysis, iii, 391.
Henslow, G., origin of endogens from exogens, vi, 77.
Hereditity, Essays on, Weissmann, iii, 196.
Herrick, C. L., Mammals of Minnesota, vi, 320.
Hermann, Mechanics of Hoisting Machinery, vii, 158.
Hertz, H., Ausbreitung der elektrischen Kraft, i, 535; electric waves, vii, 244; collected work, vol. iii, vii, 352.
Hice, R. R., glacier scratches in western Pennsylvania, ii, 172; inner gorge terraces of the Upper Ohio, ix, 112.
Hidden, W. E., plocene of North and South Carolina, i, 423; mineralogical notes, i, 488, 499; new yttrium-silicate, rowlandite, ii, 410; mackintoshite, a new mineral, vi, 90; zoisite, Mitchell Co., N. C., vi, 154; rowlandite, vi, 208; mineralogical notes, vi, 254; new localities for turquoise, vi, 400.
Hilgard, E. W., Lafayette formation, iii, 389.
Hill, E. A., argon, Prout's hypothesis, ix, 465; correction to paper on argon, i, 70; argon and helium, i, 359.
Hill, R. T., Ounachita, Mt. system, ii, 111.
artesian and underground waters in Texas, etc., iv, 333; artesian boring in Texas, iv, 406.
hematite and martite iron ores in Mexico, v, 111; Cretaceous formation of Mexico, v, 307.
geology of Indian Territory and Texas, vii, 141.
Tertiary and later history of the Island of Cuba, viii, 190.
dicotyledonous flora in the Cheyenne sandstone, ix, 470.
Comanche series in Kansas, Oklahoma and New Mexico, i, 295.
Hillebrand, W. F., new analyses of uraninite, ii, 390; zinc-bearing spring waters from Missouri, iii, 418; analyses of mackintoshite, vi, 98; rowlandite, vi, 208; chemical discussion. Beaver Creek meteorite, vii, 435; calaverite, Cripple Creek, Colorado, i, 128, 426.
Hintze, C., Mineralogy, Pt. 7, vii, 489; Pt. 8, ix, 74.
Hobbs, W. H., lime and alumina-bearing talc, v, 404; crystal form of borneol and isoborneol, ix, 449; mineralogical notes, i, 321; mineralogy of Wisconsin, i, 437.
Hodge, B., arsenic with antimony and tin, vii, 382.
Hodgkins fund prizes, v, 442; report of the Committee of Award, i, 275.
Hoffmann, G. C., ilvaite, ii, 492; chemical contributions to the geology of Canada, v, 75, ix, 324; plumbiferous tetrahedrite, i, 273.
Holm, G., Swedish paleozoic Hyolithes and Comatulids, vii, 321.
Holm, T., vitality of some annual plants, ii, 304.
Holman, S. W., precision of measurements, v, 524.
Horns and Hoofs, Lydekker, vii, 158.
Hot water and its solvent action on glass, Barnes, i, 110.
Houstoun, E. J., Outlines of Forestry, vi, 80.
Hovey, E. O., cherts of Missouri, viii, 401.
Howe, W. T. H., chondrodite, humite and clinohumite, vii, 188.
Howard, E., new meteorites, i, 52; Mt. Joy meteorite, iv, 415; meteorite of Cross Roads, N. C., vi, 67; Beaver Creek meteorite, vii, 490; two new meteorites, i, 232.
Hubbard, L. L., powellite from a new locality, vi, 356.
Hudson River "Fiord," Edwards, iii, 182.
Hunt, T. S., Systematic mineralogy, iii, 79.
Huntingdon, O. W., diamond in the Cañon Diablo meteorite, vi, 470.
Hurlburt, E. B., alunite, Ouray Co., Colorado, viii, 130; ammonium cuprous double halogen salts, i, 390.
Hussak, E., Brazilian mineralogy, iii, 77.
Hutchins, C. C., radiation of atmospheric air, iii, 357; absorption of radiant heat by alum, iii, 596; thermo-electric heights of antimony and bismuth alloys, viii, 226.
Hyatt, A., insecta, i, 256; Jura and Trias, Taylorville, California, iv, 520; laws of organic growth, vii, 157; fossils of the Trias and Jura of the Western States, vii, 142.
Hydrostatics and Hydrokinetics, Minchin, v, 528.

I
Ice, dielectric power, Blondlot, ix, 59; effects of pressure on. Wood, i, 30; of South Pole, Fricker, vi, 137.
Iddings, J. P., volcanic rocks of Tewan Mts., N. Mexico, i, 348, 441; spherulites from Wyoming, ii, 39; electric conductivity of rock magnas, iv, 242; origin of igneous rocks, iv, 237; eruptive rocks of Yellowstone Nat. Park, iv, 429.

Illinois geol. survey, i, 159.

Incandescent lamps, age-coating in, Nichols, iv, 277.

India, British, fauna, Blanford, iii, 338; vegetable resources of, viii, 511.

India rubber, solution of, Bums, ii, 339.

Indian Territory, geology, Hill, ii, 111.

Induction balance, new form, Wien, vi, 130.

cells, interrupter for large, Wadsworth, viii, 497.

Infusorial earths of the Pacific coast, Elbert, ii.

Inheritance of acquired characters, Eliot, iii, 338.

Insecta. Hyatt and Arms, i, 256.

Interference of light, influence of brightness upon, Elbert, ii, 342; of Electric waves, see under Electric.

Iowa Academy of Sciences, i, 356.

bulletin, State university laboratories, v, 168.

bulletin of Natural History of the university, 1890, i, 72.

gel survey, see Geol. Reports and Surveys.

Ireland, W., State mineralogist, report for California, 1890, i, 440.

Iron, chemical analysis, Blair, ii, 428.

Iron ore, Clinton, Smyth, iii, 487.

ores of Michigan, Van Hise, iii, 116.

Irrigation Engineering, manmal, Wilson, v, 442.

Isostasy. Gulf of Mexico as measure of, McGee, iv, 177; Dutton, vi, 238.

Isothermals, isopiestic and isometrics relative to viscosity, Bums, v, 87.

Italian Botanical Society, iii, 437.

J

Jannasch, P., water in topaz, vii, 386.

Japan, the great earthquake, Milne and Burton, iv, 80.

Jones, G. W., Logarithmic tables, v, 362.

Judd, composite dikes of Arran, i, 270.

Jupiter’s orbit, plane of, etc., Newton, ix, 429.

K

Kansas Coal Measures, foot prints, March, viii, 81; stratigraphy, Keyes. i, 239; Haworth, i, 452.

Kathode rays, absorption, Lenard, i, 503.

Kayser, E., Lehrbuch der geologischen Formationen, vi, 75.

Keller, H. F., Michigan minerals, ii, 496; Experiments for Students in General Chemistry, iii, 153.

Kelvin, Lord, thermal conductivity of rocks, i, 419.

Kennedy, C., Astronomy, ix, 484.

Kentucky, geological survey, see Geol. Reports and Surveys.

Keyes, C. R., perisomic plates of the Crinoids, i, 247; redrock sandstone of Marion County, Iowa, i, 273; fauna at the base of Burlington limestone in Missouri, iv, 447; Paleontology of Illinois, ix, 475; stratigraphy of the Kansas coal measures, i, 239.

Kidston, R., Paleozoic species of Lindley and Hutton’s Fossil Flora, iii, 244.

Kidwell, E., rock cutter and trimmer, ix, 417.

Kiiluena, Hawaii, April, 1892, Bishop, iv, 307, Aug., 1892, Dodge, v, 241, viii, 78.

Recent eruption, Baker, i, 336, 449, ii, 77; Bigham, i, 507, 518; Thurston, viii, 338.
Kimball, J. P., genesis of iron ores, ii, 231.
King, C., age of the earth, v. 1.
Kirchhoff's law and the radiation of gases, Pringsheim, iii, 433.
Kittredge, The Metal Worker, ii, 523.
Knowlton, F. H., fossil flora of the Bozeman coal field, iv, 334; of Alaska, vii, 137.
Koenig, G. A., paramelaconite and footeite, iii, 158; powellite from a new locality, vi, 396.
Kohlfurst, L., elektrischen Eisenbahn-Einrichtungen, vi, 79.
Koken, Die Vorwelt, etc., vii, 483.
Kountze, A. F., Alaska garnet, i, 332.
Krahmann, M., Zeitschrift für praktische Geologie, v, 525.
Kreider, D. A., detection of alkaline perchlorates, viii, 38; mineralogical notes, viii, 141; chlorine, vii, 168; preparation of perchloric acid, etc., ix, 443; forms of laboratory apparatus, ii, 133; determination of perchlorates, i, 267.
Kreisderechnung, Anleitung zur, Hecht, vii, 145.
Kryatallographie, Index, Goldschmidt, i, 533, 441.
Kryatallographische, Physikalische, Gnoth, ix, 74.
Kryt-chemische Tabellen, Foek, i, 255.
Kunz, G. F., diamonds in Wis., i, 252; aerolite from Washington Co., Kansas, iii, 65; mineralogical notes, iii, 329; meteoric iron from Virginia and Chilli, iii, 424; gems and precious stones of North America, iv, 501; diamond in the Cañon Diablo meteoric iron, vi, 470; topaz from Texas, vii, 403; new locality of true emeralds, viii, 429.
Küstner, variations of latitude, iii, 163.

Laboratory apparatus, Gooch, iv, 239; Kreider, i, 138.
Laboratory apparatus, Armstrong and Norton, iii, 535.
Labrador, geological notes on, Cary, ii, 419, 516.
Lacroix, A., Mineralogie de la France et ses Colonies, vi, 76; les Enclaves des Roches Volcanique, vii, 404.
Lancaster, A., list of observatories and astronomers, i, 76.
Landauer, J., Blowpipe Analysis, iv, 80.
Lander, C. F., de, Mexican grossularite, i, 321; Sinai mineralogica, i, 538.
Lane, A. C., Michigan minerals, ii, 490; estimation of optical angle, iii, 79; relation of double refraction to soda in hornblende, viii, 172.
Langley, S. P., experiments in aerodynamics, ii, 437; internal work of wind, vii, 41.
Lathrop, C. L., Elements of Mineralogy, ix, 480.
Latitude observations on Oahu, Hawaiian Is., Preston, iii, 438.
periodic variations, Küstner, iii, 163.
Latitude, secular variation of, Comstock, ii, 470.
Lea, M. C., allotropic silver, i, 179, 239, 482; ii, 312.
disruption of the silver-haloid molecule by mechanical force, iii, 527.
estimation and dehydration of silver oxide, iv, 240; silver hemisulphate, iv, 322; notes on silver, iv, 444; silver chlorides, iv, 446.
nature of certain solutions and means of investigating them, v, 478.
endothermic reactions effected by mechanical force, vi, 241; endothermic decompositions obtained by pressure, vi, 413.
transformation of mechanical into chemical energy, v, 377; relative affinities of acids, vi, 445.
solutions of metallic silver, vii, 343; platinoclorides and platinum subchlorides, viii, 397.
color relations of atoms, ions and molecules, ix, 357.
Lead and zinc region of Wisconsin, Blake, vi, 306.
Lectures and addresses, vol. ii, Thompson, viii, 483.
Leduc, mass of air, vii, 475.
Leicester earthquake of Aug. 4, 1898, Davison, viii, 78.
Leidy memorial museum, ii, 438.
Lens, telephotographic, new, Dallemeyer, v, 158.
Lesley, J. P., geology of Pennsylvania, iii, 539; vi, 73.
Lester, A., Monograph of the Mycetozoa, ix, 519.
Letters of Berzelius and Liebig, v, 433; of Scheede, v, 434.
Leverett, F., pleistocene fluvial planes of Pennsylvania, ii, 200; moraines of Lake Erie, iii, 281; drainage features of Upper Ohio basin, vii, 247; correlation of New York moraines, i, 1.
Lévy, feldspaths dans les plaques minees, vii, 173.
Lewis, H. C., glacial geology of Great Britain, viii, 73.
Ley, W. C., Cloudland, ix, 188.
Libbey, W., Jr., gases in Kilanae, vii, 371.
Lick Observatory of the Univ. of California, publications, viii, 76.
Lightning discharges, oscillations, tana, i, 218; refraction and refraction by thin surface layers, Drude, ii, 70; refraction of, upon the snow, Whitney, vi, 389.
Lightning discharges, oscillations, Trowbridge, vi, 195.
Lilienthal, flying experiments, vii, 479.
Lindenau, A., post-glacial subsidence of middle Atlantic coast, i, 489.
Lindgren, W., gold deposit at Pine Hill, California, iv, 92; sodalite-syenite and other rocks from Montana, v, 296; auriferous veins of California, vi, 201; auriferous conglomerate, from the Sierra Nevada, viii, 273.
Linsebarger, C. E., colloid solutions, iii, 218; molecular masses of dextrin and gum arabic, iii, 426; relations between the surface tensions and chemical constitution of liquids, iv, 83; concentration of the ions as affecting the color of salt solutions, iv, 416; application of law of solubility to solutions of salts, ix, 48; relations between temperature, pressure, etc., ix, 389.
Lippmann, color photography, i, 326; iv, 75, 499; v, 68.
Lister, J. J., geology of the Tonga or Friendly Islands, iii, 248.
Liversidge, A., chalk and clints at the Solomon Islands, iii, 157; effect on gold of fungoid growths, iii, 245; magnetite in certain minerals and rocks, v, 76; minerals from New South Wales, i, 426.
Lobwornse, Davison, iii, 162.
Logarithmic tables, Jones, v, 362.
Luedeking, C., Missouri barite, ii, 496; synthesis of crocoite and phasnicohorite, iv, 57; specific heat of liquid ammonia, v, 200.
Lueders, H. L., structure of caoutchouc, vi, 135.
Laquer, L. McI., optical examination of cacoxenite, vi, 154; three new analyses of sodalite, ix, 465.
Lydicker, R., catalogues of the British Museum, i, 330; Horns and Hoofs, vii, 158.
Lyons, A. B., analysis of water from the salt lake of Oahu, ii, 522.

M
Macgregor, W., upraised Coral Islands off New Guinea, iv, 236.
Mach, E., Science of Mechanics, ix, 484.
Mackinac Island, highest shore line on, Taylor, iii, 210.
Mackintosh, J. B., polycrase of North and South Carolina, i, 428; mineralogical notes, i, 438; obituary of, i, 444.
Macoura, embryoology and metamorphosis in, Brooks and Herrick, v, 166.
Magnesium as source of light. Rogers, iii, 301.
Magnetic circuits, joints, Ewing, iv, 490.
declination in the U. S. for 1890, Schott, ii, 178.
and earth current phenomena, relation between, Ellis, iv, 424.
effect of the sun upon the earth, Thomson, v, 68.
field of the earth, Bigelow, i, 81, permanent, Hibbert, iii, 432; mapped by photography, Thwing, iv, 374.
and electrical instruments, Quincke, v, 354.
needle, causes of variations, Bigelow, ii, 253.
permeability, Klemencic, ix, 61; St. John, ix, 236.
properties of liquid oxygen, vi, 73.
screening of conducting media, Borgman, i, 516.
variations, registration, Eschenhagen, v, 524.
Magnetism of asbestos, Bleekrode, i, 418.
Magnetism, electro-chemical effects due to, Squier, v, 443.

terrestrial, Bigelow, i, 76; secular variation of, Bauer, i, 109, 189, 314; Wilde's theory, Bauer, iii, 496.

Magnetization of iron, Klemencic, vii, 480; ix, 61.

Manganese ores in Arkansas, Penrose, ii, 516.

Mar, F. W., estimation of barium as sulphate, i, 288; determination of barium in presence of calcium and magnesium, iii, 521.

Marbles of Georgia, McCullie, i, 350.

Marindin, H. L., losses of Cape Cod by sea-enroachments, ii, 172.

Mars, the planet, Flammarion, v, 77.

Marsh, O. C., Horned Artiodactyle from the Miocene, i, 81; gigantic Ceratopsid of North America, i, 167; restoration of Triceratops, i, 339.

Restoration of Stegosaurus, ii, 179; new vertebrate fossils, ii, 265; geological horizons determined by vertebrate fossils, ii, 336.

Skull of Torosaurus, iii, 81; discovery of Cretaceous mammalia, Pt. III, iii, 249; recent polycadyle horses, iii, 339; new order of extinct Eocene mammals, iii, 445; new reptiles from the Laramie formation, iii, 449; notes on Triassic Dinosauria, iii, 543.

Mesozoic vertebrate fossils, iv, 171; restorations of Stegosaurus and Ceratosaurus, iv, 943; restorations of Mastodon Americanus, Cuvier, iv, 350.

New Cretaceous bird allied to Hesperornis, v, 81; brain and skull of Chasmosaurus, v, 83; restoration of Anchisaurus, v, 169.

Restoration of Coryphodon, vi, 321; Miocene Mammalia, vi, 407.

Camptosaurus, vii, 245; Elchertum, vii, 407; new Miocene Mammal, vii, 409.

Footprints in the coal measures of Kansas, viii, 81; Ornithopoda of the American Jurassic, viii, 85; eastern Miomippus beds, viii, 91; Miocene artiodactyles, viii, 175; Tertiary artiodactyes, viii, 259; gigantic bird from New Jersey, viii, 344; new Miocene tapir, viii, 348.

Pithecanthropus erectus, ix, 144.

Notice of Thomas Henry Huxley, l, 177; reptilia of the Eaptanodon beds, l, 435; restoration of some European Dinosaurs, l, 497; classification of Dinosaurs, l, 483.

Maryland, geology and physical features, Williams and Clark, vii, 320.

Magogy formation, Darton, v, 407.

Mass of normal air, Leduc, vii, 475.

Mathematical papers of H. J. Smith, collected, Glashier, viii, 432.

Mathematicians and Astronomers, Congress, iv, 81.

Mathematische Abhandlungen, Schwarz, i, 80.

Matthew, G. F., fauna of the St. John group, ii, 73; viii, 72; Cambrian fossils of New Brunswick, v, 164; faults of post-glacial origin, ix, 322; the Protolemons fauna, l, 265.

Matthew, W. D., antennae and other appendages of Triarthrus Beckii, vi, 131.

Matthews, F. S., Familiar Flowers of Field and Garden, l, 78.

Maxim's flying machine, ii, 342; viii, 428.

Mayer, A. M., illuminating power of flat petroleum flames, i, 53; physical properties of vulcanite, i, 54; phenomena of simultaneous contrast-color, and the intensities of lights of different colors, vi, 1; researches in acoustics, vii, 1; sensations of interrupted tones, vii, 283.

McGee, W. J., Gulf of Mexico as a measure of isostasy, iv, 177; Pleistocene history of Northeastern Iowa, v, 71; Lafayette formation, v, 163.

Measurements, Discussion of the Precision of, Holman, v, 524.

Mechanical equivalent of heat, Sahulka, i, 135.

Mechanical equivalents of Hoisting Machinery, Weisbach and Herrmann, vii, 159.

Science of, Mach, ix, 484.

of Solids and Fluids, Selby, v, 528.

Theoretical, Spencer, iv, 256.

Melting-point apparatus, Christo-

Manos, i, 68.

Relation to fusion, Bums, iii, 56.

Melville, W. H., powellite, calcium molybdate, i, 138; diaspore crystals, i, 475; josephinite, new nickel-iron, iii, 509; analyses of rocks from Montana, v, 386.

Mendeleeff, Principles of Chemistry, iii, 533.
Mendenhall. T. C. free pendulum as a time standard, iii, 85; use of planes and knife-edges in pendulums for gravity measurements, v, 144; gravity research, vi, 80; relation of gravity to continental elevation, ix, 81.

Mercurial air-pump, Morley, vii, 439.

Mercury, specific resistance. Jones, vi, 151; vacuum pump, Pepin, ix, 19; voltaic arc, Avon, v, 159.

Meriden Scientific Association, i, 257.

Merrill, J. C., reptilian remains from the Triassic of No. Calif., i, 55.

Merrill, F. J. H., post-glacial history of the Hudson River valley, i, 460; salt and gypsum industries of New York, vi, 240.

Merrill, G. P., stones for building and decoration, ii, 516; azure-blue pyroxcenic rock, New Mexico, iii, 279; microscopical discussion Beaver Creek meteorite, vii, 433.

Merritt, E., galvanometer used with the thermopile, i, 417.

Meschinelhi, A., Sylloge fungorum fossilium, etc., iv, 335; flora terriatia Italica, v, 438.

Mesnard, localization of the perfumes of flowers, v, 335.

Metal Worker, Kittredge, ii, 538.

Metamorphosis of the same species, large variations in, Brooks and Herrick, v, 166.

Métaux, Leçons sur les, Ditte, iii, 335.

Meteorite iron containing argon and helium, Ramsay, i, 264; carbon, Moisson, i, 499.

Meteoritenkunde, Cohen, ix, 324.

Meteorite collections, catalogue of, Ward, iii, 542; of Field Columbian Museum, i, 427.

Lines of structure in, Newton, v, 152, 355.

Meteorites, Iron—Arizona, Cañon Diablo, Foote, ii, 413; Derby, ix, 101.

Australia, vi, 76.

Canada, Welland, Ontario, Howell, i, 518; Davison, ii, 64.

Chili, Atacama, Howell, i, 518; Kunz and Weinschenk, iii, 444.

Georgia, Cherokee Mills, Howell, i, 392.

Indiana, Plymouth, Ward, ix, 58.

Kansas, Kiowa Co., Hay, iii, 80; Tonganoxie, Bailey, ii, 386.

Kentucky, Kenton Co., Preston, iv, 168.

Maryland, Garrett Co., Foote, iii, 64.

Meteorites, Iron—Mexico, Fletcher, i, 79.

New Mexico, El Capitan, Howell, i, 252.

Tennessee, Hamblen Co., Eakins, vi, 283, 482.

Texas, Hamilton Co., Howell, i, 518.

Virginia, Floyd Co., Kunz and Weinschenk, iii, 424.

Meteorites, Stone—British Columbia, Beaver Creek, Howell, vii, 430; chemical and microscopical discussion, Hillebrand and Merrill, vii, 431.

Italy, Crema, Newton, i, 235.

Kansas, Kiowa Co., Hay, iii, 80; Washington Co., Kunz and Weinschenk, iii, 63; Preston, iv, 400.

North Carolina, Cross Roads, Howell, vi, 67.

South Dakota, Bath, Foote, v, 64.

Meteoroids, the force that acts on, after they have left the comets, Newton, vii, 152.

Meteors, Andromed, of November, 1892, Newton, v, 61; Geminid, Dec. 11, 1892, v, 77; photographs of Aug. and Dec., Elkin, vii, 154.

Meter, value in inches, Comstock, vii, 74.

Metrological Society, American, address before, Gould, v, 246.

Metrology, application of light waves, Michelson, vii, 76.

Menier, S., Les méthodes de synthèse en Minéralogie, iii, 245; La Géologie Comparée, l, 348.

Meyer, L., Outlines of Theoretical Chemistry, iv, 255.

Meyer, R., Jahrbuch der Chemie, iv, 72.

Miche, Practical Astronomy, v, 528.

Michigan geol. survey, see Geol. reports and surveys.

iron ores, Van Hise, iii, 116.

Microchemical Analysis, Behrens, ix, 74.

Miers, H. A., quartz from North Carolina, vi, 420; anomalies in the growth of alum crystals, vii, 350.

Mill, H. R., glacial land-forms of the Alps, ix, 121.

Miller, S. A., geological survey of Missouri, i, 455.
Minchin, G. M., Hydrostatics and Hydrokinetics, v, 528.
Mineral collector, ix, 248.
Industry, Rothwell, vii, 510; i, 427.
Localities, Catalogue of American, Dana, v, 441.
Resources of the U. S., Day, iv, 430; vi, 75; ix, 73.
Mineralien, mikroskopische Physiographie der, Rosenbusch, v, 75.
Mineralogie, Sinopals, Landero, i, 518.
Mineralogical and Crystallographical Literature from 1885–1891, Groth and Grünlinger, v, 442; vi, 312.
Report, California, i, 440.
Mineralogie, chemische, Doelter, i, 441.
Cours de, Friedel, vii, 145.
de la France et ses Colonies, Lacroix, vi, 76.
Handbuch der, Hinte, ix, 74.
manuel de, Des Cloiseaux, vii, 75.
Russland, Kokscharow, ii, 77.
Mineralogiques, Recherches, Tolstoi, vii, 146.
Mineralogy, Crystallography and Blowpipe Analysis, Moses and Lathrop, ix, 480.
Manual of Determinative, Endlich, v, 76.
of Hinte, Pt. 7, vi, 482.
Summary of Progress, Bayley, iii, 540.
System, E. S. Dana, iii, 539.
Systematic, Hunt, iii, 79.
Synthetische, Menrier, iii, 245.
Minerals and How to study them, Dana, 1, 274.
catalogue, English, ii, 438; viii, 511.
separation, of high specific gravity, Penfield, i, 447.
from Snake Hill, N. J., Perry, i, 73.
and synonyms, catalogue of, Egleston, ii, 434.
Tables for the determination of, Frazer, ii, 77.
MINERALS—
MINERALS—
Copper in western Idaho, i, 298.
Danellite, W. Cheyenne Cañon, iv, 385; Cornwall, iv, 430. Datolite, Loughboro, Ont., v, 100. Desmine, Brazil, iii, 77. Diamond in the Cajon Diablo meteoric iron, Kunz and Huntington, vi, 479; artificial, vi, 477, viii, 68; chemical properties of, vi, 477. Diamond, Ws., i, 252. Diaspore, Colorado, i, 406, 475. Dietzeite, Chili, i, 76. Dolomite, origin of, ix, 426.
Ivanite, Canada, ii, 432. Iolite, composition discussed, iii, 13. Iron, meteoric, ii, 64; see Meteorites, Iron.
Nantokite, New South Wales, i, 426. Natrolite, Magnet Cove, iii, 159; viii, 101. Nephecrite, Ontario, viii,
MINERALS—
lucite, composition, i, 213. Poly-
basite, Aspen, Col., iv, 15. Poly-
class, W. Cheyenne Cañon, iv, 385; crystals in spherulites, ii, 42; twist-
ed crystals. Tschermak, i, 351. Realgar, Yellowstone, ii, 403. Rector-
ite, so-called, 1, 244. Scolecite, Brazil, ii, 177; composition, vii, 190; Sjiä-
rufite, Sweden, iv, 292; vii, 75. Sodalite, anal., ix, 465; Montana, i, 396; Ontario, vii, 16. Staninite, Black Hills, S. D., v, 105. Stauro-

MINERALS—
lite, chemical composition. Penfield and Pratt, vi, 81. Stibiotantalite, Australia, ix, 479. Stilbite, viii, 190. Sulphohalite, i, 498. Sulphur, Yellowstone, ii, 401; native, Michi-
gen, i, 246. Sundlitte, Bolivia, vi, 154; Svabite, iii, 245. Synchondrie-
Missouri geol. survey, see Geol. Reports and Surveys.

Mitchell's comet, 1847, orbit of, Newton, ix, 430.

Mixer, W. G., deportation of charcoal, with the halogens, nitrogen, sulphur and oxygen, v, 369.

Molten rock, contraction, Barnes, ii, 498.

Montana phonolitic rocks, Pirsson, i, 394, Weed, i, 506; igneous rocks, Weed and Pirsson, i, 467.

Moreland, S. T., force exerted by a current of electricity, v, 392.

Morley, E. W., volumetric composition of water, i, 220, 276; mercurial air pump, vii, 489.

Morphologische Studien, Schumann, v, 167.

Moseley, H. P., minute quantities of arsenic in copper, vii, 292.

Moses, A. J., Mineralogical notes, v, 488; Elements of Mineralogy, ix, 480.

Mount Bob or Mount Ida, Harris, iii, 230.

Mount Loa, Hawaii, Baker, vi, 310.

Mount St. Elias, expedition to, Russell, ii, 171; glaciers, Russell, iii, 168.

Mudge, E. H., Central Michigan and the post-glacial submergence, i, 442.

Mühlhäsner, crystallized silicon-carbide or carburnum, vii, 477.

Müller, C., die Balken in den Holzelementen der Coniferen, i, 254.

Murray, J. R. E., thermal conductivity of rocks, i, 419.

Muthmann, W., so-called schneebergite, i, 244.

N

Naples Zoological station, vi, 80.

Natural history bulletin, University of Iowa, 1890, i, 72.

Natural Science, a monthly review, iv, 170.

Nebraska, University of, studies, i, 80.

Nehring, H., Native Birds, vii, 159; ix, 484.

Nernst, W., Theoretical Chemistry, ix, 315.

Newberry, J. S., the flora of the Great Falls Coal Field, Montana, i, 191; genus sphenophyllum, ii, 76.

Newberry fund, vi, 159.

New Jersey geol. report, see Geol. Reports and Surveys.

Newth, G. S., Chemical Lecture Experiments, v, 68.

Newton, H. A., fireball in Raphael's Madonna di Foligno, i, 295; capture of comets by planets, ii, 185, 482; Andromed meteors of November, 1892, v, 61; lines of structure in meteorites, v, 152, 355; fireball of Jan. 13, 1893, vi, 161; the force that acts on meteoroids after they have left the comets, vii, 152; plane of Jupiter's orbit, etc., ix, 430; orbit of Miss Mitchell's comet, 1847, ix, 480.

New York, Paleontology, Hall and Clarke, iv, 330, vi, 239, vii, 319; state geologic map, i, 505.

Niagara Falls, duration, Spencer, viii, 455.

Nichols, E. L., alternating electric arc between a ball and point, i, 1; age-coating in incandescent lamps, iv, 277.

Physics and applied electricity, viii, 346.

Nikitin on Quaternary deposits in Russia, v, 439; Bibliothèque géologique de la Russie, viii, 72.

Niven, W., xenotime, monazite, etc., on Manhattan Island, i, 75.

Nordenskiöld, Letters of Scheele, v, 434.

North America, Lakes of, Russell, i, 506.

North American continent during the Cambrian, Walcott, v, 163.

Fauna, No. 7, vi, 240.

North Polar basin, Seebohm, vi, 408.

Nutting, C. C., Bahama Expedition of the State Univ. of Iowa, ix, 428.

Obituary—

Coakley, G. W., vi, 484. Cooke, J. P., viii, 335. Croll, James, i, 258.

Dana, James D., ix, 329. DeCandolle, Alphonse, vi, 236. Denza, Father, ix, 80.

Eaton, Daniel Cady, i, 184.

Obituary—
Genth, F. A., v, 357. Gibbes, L. R., ix, 80.
Koksharow, N., v, 362.
LeConte, John, i, 524. Leidy, Joseph, i, 523. Lovering, J., iii, 167.
Oliver, J. E., ix, 484. Owen, R., v, 80.
Pastour, L., i, 434. Pengelly, W., vii, 484. Desscher, G., viii, 484.
Observatories, list of, Lancaster, i, 76. Ocean, Indian, depth of 3000 fathoms in, i, 443.
Optic angle, estimation. Lane, iii, 79. indicatrix and the transmission of light in crystals, Fletcher, v, 255.
Optics, recent progress, Stevens, i, 277, 377.
Ore Deposits of the U. S., Kemp, vi, 481.
Organ pipes, energy used in, Weed, ii, 21.
Organic dyes, optical relations of, Vogel, ii, 342.
Orr, H. B., Theory of Development and Heredity, vii, 158.
Orton, E., quartz boulder in the Sharon coal of northwestern Ohio, iv, 62; Petroleum natural gas and asphalt rock of W. Kentucky, iv, 78.
Osborn, H. F., Monnimalia in North America, vi, 379, 448.
Oscillation and magnetization of iron, Clemeneic, vii, 480.
Osteology of Poebrotherium, Scott, iv, 438.
Ostwald, W., solutions, iii, 335; Lehrbuch der allgemeinen Chemie, v, 325; Hand- und Hilfsbuch zur Ausfuhrung Physiko-chemischer Messungen, vi, 480.
analytical chemistry, viii, 345.
Ostwald's Klassiker der exakten Wissenschaften, i, 358; ii, 178; iii, 168; v, 78, 169; vi, 160; ix, 79.
Owen, Richard, Life of, iv, 247.
Memorial, vi, 79.

P
Packard, R. L., azure-blue pyroxenic rock. New Mexico, iii, 279; variscite from Utah, vii, 297; copper in Western Idaho, i, 298.
Paleontologie, Zittel, i, 330; I, 288. vegetale, Zeiller, iv, 334.
Paleontology. see GEOLOGY.
elementary, Woods, vii, 79.
Palmer, A. DeF., Jr., wave length of the D4 helium line, l, 357.
Panama geology, Donville, v, 74.
Patterson, A. H., electrical oscillations, increasing the frequency, vi, 359.
Pax, F., Lehrbuch der Botanik, ix, 75.
Pearce, S. H., polybasite and tennantite from Aspen, Col., iv, 15.
Peckham, S. F., petroleum in its relations to asphaltic pavement, vii, 29; nitrogen content of California bitumens, viii, 250; origin of bitumens, viii, 389; Pitch Lake of Trinidad, l, 38.
Peiere, B. O., thermo electric properties of platinoid and manganese, viii, 302; thermal conductivities of marble and slate, l, 435.
Pierce, G. J., notes on Corticium Oakesii and Michenera Artocreas, i, 163.
Peleponnesus, geology of, Philippon, ii, 173; iv, 79.
Pendulums for gravity measurements, vi, 392.
Pendulum chronograph, Barns, viii, 394.
free, as time standard, Mendenhall, iii, 83.
Pendulums for gravity measurements, use of planes and knife-edges in, Mendenhall, v, 144.
Penfield, S.
Pensig.
Penrose.
Perry, E.
halides, iii, 176; crystallographic notes, i, 384.
minerals in spherulites of rhyolite, ii, 36.
crystallography of cesium tribhalides, iii, 17; crystallographic notes, i, 394.
crystallography of rubidium and potassium tribhalides, iii, 475.

polybasite and tennantite from Aspen, Col., iv, 15; crystallography of alkali-metal pentahalides, iv, 42; herderite from Hebron, Me., iv, 111; crystallographic notes on alkaline halides, iv, 123; crystallography of double halides of silver and alkali-metals, iv, 155; crystallography of the cesium and rubidium chloraurates and bromaurates, iv, 157; crystallography of cesium-mercuric halides, iv, 311; crystallographic notes, iv, 381.

cookite from Maine, v, 393; mineralogical notes, v, 396; pentlandite, Ontario, Canada, v, 493.
canfieldite, a new Germanium mineral, vi, 107; minerals from St. Marcel, Italy, vi, 388.

chemical composition of staurolite, vii, 81; chondrodite, harronite and chondronitite, vii, 188; willemite, vii, 395; herderite, vii, 329; composition and properties of topaz, viii, 387; argyrodirite, viii, 451.
determination of water, viii, 30; mineralogical properties, viii, 114, 141; optical properties of lithiophilit, etc., i, 287; separation of minerals of high specific gravity, i, 447.
Penrose, R. A. F., manganese ores in Arkansas, ii, 516; Geol. survey of Arkansas, iv, 428.
Pensig, O., Pflanzen-Terologie, ix, 78.
Pennsylvania, geology, Lesley, iii, 506; geol. survey, see Geol. Reports and Surveys.
Periodic law discussed, Hill, ix, 405.
Perry, E. W., minerals from Snake Hill, New Jersey, i, 73.

Peru, astronomical expeditions, iii, 240.
Peters, E. D., Jr., American methods of copper smelting, iii, 167.

Petrographie, Zirkel, vi, 132; vii, 320; ix, 333.

Petrology, Introduction to, Hatch, i, 517.
for students, Harker, i, 425.
Phasemeter, Trowbridge, iii, 232.

Phelps, I. K., reduction of arsenic acid, vii, 216; determination of carbon dioxide, i, 101.

Philippson, A., geology of the Pelo-

ponentsus, ii, 173; iv, 79.

Philosophical Society, American, v, 527.

Phinney, J. I., rubidium determined by the spectroscope, iv, 392; barium sulphate in analysis, v, 468.

Phonics of auditoriums, Cutter, ii, 498.

Phosphate deposits of Florida, Darton, i, 102; Johnson, v, 497; nodules of South Carolina, Reese, iii, 402.

Phosphates of America, Wyatt, iii, 79; of Florida, South Carolina, and Canada, Miller, iv, 342.

Phosphorescence, Wiedemann, ii, 69; at low temperatures, Raoult, Pictet and Allschul, ix, 152.

Phosphorescent rays, penetration of thin metallic screens, Lenard, v, 435.

Photochronograph, Marey, i, 70.

Photo-electricity, Minechin, i, 326.

Photographic sensitive, Vogel, i, 70.
spectrum of the Great Nebula in Orion, Lockyer, ix, 152; study of the movement of projectiles, Neesen, v, 253.

Photographie, Geschichte, Schiendl, i, 430.

Photography, color, Lippmann, i, 326; iv, 75, 499; v, 68; Wiener, i, 417; by indirect methods, Lumière, i, 501; in color, Thwing, ii, 388; Vogel, iv, 429.
of Hertz spark, Enden, vi, 151; orthochromatic, Fabre and Andoyer, iii, 239.

pin-hole, Rayleigh, i, 337; of the spectrum in color, Vogel, ii, 426.
of ultra red rays, Higgs, i, 515.

Photometer, for different colors, Mayer, vi, 1.

Photometric method independent of color, Rood, vi, 173.
Physical Crystallography. Groth, i, 77.
Measurements, Laboratory Course in, Sabine, vi, 74.
observatory, Washington, ii, 78.
Review, Nichols and Merritt, vi, 152.
and chemical phenomena at very low temperatures, Pictet, iv, 258.
Physics, prize for researches in, iii, 240.

Physiko-chemischer Messungen, Handbook, Nos. 68, 69, iii, 162.

Planets, new tables for, 1. 309, 467

Porosity of solid bodies for the light ether. Zehnder, i, 70.

Potential, a Bernoullian term, Becker, v, 97; Green's use of, Becker, vi, 151.

Pluton, K., Die natürlichen Pflanzenfamilien, Nos. 68, 69, iii, 162.

Pratt, J. H., chemical composition of staurolite, vii, 81; ferrons iron in silicates, viii, 149; mineralogical notes, viii, 212; double halides of caesium, etc., with thallium, etc., ix, 397; optical properties of lithiophilite and triphylite, l, 387.

Preston, E. D., study of the earth's figure by the pendulum, 1. 445; latitude observations on Oahu, Hawaiian Is., iii, 438; gravity determinations at the Hawaiian Islands, v, 256; direction of gravity in the Hawaiian Islands, ix, 271.

Preston, H. L., meteorite, Washington Co., Kansas, iv, 400; new meteorite from Kenton Co., Kentucky, iv, 163.

Prestwich, J., submergence of Europe, vii, 146.

Priestley's semidiametric method, Wanklyn, i, 428.

Pride-question of Schnyder von Wartensee foundation, ix, 326.

Proctor, J. R., Kentucky, Geol. survey, iv, 77.

Projectiles, motion studied by photography, Nessen, v, 253.

Proser, C. S., Devonian system of eastern Pennsylvania, iv, 210; the upper Hamilton and Portage stages of New York, vi, 212.

Pullrich, C., total-reflectometer, i, 431.
Pumpelly, R., secular rock-disintegration as related to transitional crystalline schists, ii, 346; structural relations of the Huronian, ii, 224; timebreak between Eocene and Chattahoochee Miocene in Georgia, vi, 445.

Pupin, M. I., action of vacuum discharge streamers, iii, 263; electrical and coronaloid discharges, iii, 463; electrical oscillations of low frequency and their resonance, v, 395, 420, 508; resonance analysis of alternating currents, viii, 379, 473; automatic mercury vacuum pump, ix, 19; electro-magnetic theory, 1, 326.
Quatrefages, A. de, les Émules de Darwin, vii, 159.
Quincke, magnetic and electrical instruments, v, 254.
Radiation, absorption by alum, Hutchins, iii, 536; of atmospheric air, Hutchins, iii, 257; Abbe, iii, 364.
between 15° C. and 100° C., discussion of formula for, Stevens, iv, 431.
Radiation of gases, Pringsheim, iii, 433; Paschen, vii, 77.
Rafinesque, Life of, ix, 247.
Ramsay, W., System of inorganic chemistry, ii, 510; on argon, ix, 275; argon and helium, 1, 264.
Ramsay's physical geology and geography of Great Britain, Woodward, viii, 135.
Raps, apparatus for Ampère's laws, vii, 479.
Rath, G. vom, Index of mineralogical papers, vi.
Rayleigh, Lord, on argon, ix, 275.
Reade, T. & I., compressive stress in rocks and recent rock flexures, i, 409.
Redfield, J. H., flora of Mt. Desert, Me., viii, 431.
Reese, C. L., phosphate nodules of South Carolina, iii, 402.
Reiset, M., amount of water in the soil after a severe drought, vi, 157.
Resonance, multiple, Bjerknes, ix, 231.
Retgers, conversion of yellow to red phosphorus, vii, 475.
Reyer, E., experiments in physical geology, v, 164; Geologische experimente, i, 74.
Reynolds, W. G., reduction of the acids of selenium by hydriodic acid, i, 254.
Richter, K., index of European plants, 1, 165.
Richter, V. von, Chemistry of carbon compounds, ii, 509.
Ridley, H. N., raised reefs of Fernando de Noronha, i, 406.
Ries, H., artificial crystals of zinc oxide, vii, 206.
Riggs, E. B., separation of iron, manganese and calcium, iii, 135; separation of magnesium chloride from the chlorides of sodium and potassium, iv, 103; separation of chromium from iron and aluminium, vii, 409.
Ring magnets, for intense fields, Dubois, vii, 401.
Roberts, C. F., reduction of nitric acid by ferrous salts, vi, 136; estimation of chlorates and nitrates, vi, 231; action of reducing agents on iodic acid, vii, 232, viii, 151; potassium permanganate in iron analysis, viii, 290.
Robinson, B. L., contributions from the Gray Herbarium of Harvard Univ., i, 135.
Rock conductivity for heat, Kelvin and Murray, 1, 419; Peirce and Willson, 1, 435.
Crowther and trimmer, Kidwell, ix, 417.
specimens, directions for collecting, 1, 349.
Rock-cutting and grinding machine, Williams, v, 102.
Rocks, study of, Fletcher, i, 426.
Rocks—
Actinolite-magnetite schists from Minnesota, Bayley, vi, 176.
Aegina and Methana, petrographical sketch, Washington, 1, 74.
Alnoite containing melilite from Canada, Adams, iii, 269; from Manheim, N. Y., Smyth, vi, 104.
Andesites, etc., of Ecuador, Belowsky, v, 75.
Aphite, Conanicut Island, R. I., vi, 374.
Basalt and trachyte from Gough's Island, S. A., Pirsson, v, 380.
Basic dike near Hamburg, N. J., Kemp, v, 298.
Complementary and radial dikes, Pirsson, 1, 116.
Composite dikes of Arran, Judd, 1, 270.
Crystalline schists, Teall, vi, 480.
Diabase of N. Jersey, contact phenomena, Andrews and Osann, iv, 500.
ROCKS—
Dike at DeWitt, N. Y., Darton and Kemp, iv, 456.
Elvolite-syenite from Hamburg, N. J., Kemp, v, 298; Litchfield, Me., etc., Bayley, iv, 500.
Eruptive rocks, Yellowstone Nat. Park. Iddings, iv, 429; Christiansen, Brögger, 1, 348.
Gabbros in the Adirondack region, Smyth, viii, 54; of Minnesota, augite and plagioclase intergrowths in Bayley, iii, 515.
Gneisses of the Laurentian, Adams, l, 64.
Granite, Conanicut Island, R. I., vi, 372; Durbach, Sauer, iv, 429; rifting in Tarr, i, 267.
Granites, Argentine, Romberg, v, 441.
Greenstone schist in Michigan, Williams, ii, 279.
Igneous rocks, of Arkansas, Williams, iii, 159; of Eastern N. A., Williams, vii, 140; of Mexico, Cross, v, 119; of South Mt., Penn., Williams, iv, 482; of Tewan Mts., Iddings, i, 248; origin of Iddings, iv, 257.
Lavas of Mt. Ingalls, California, Turner, iv, 455.
Limestone, flexibility, Winslow, iii, 133.
Marble, thermal conductivity, l, 485.
Mica-peridotite, Kentucky, iv, 286.
Micro-pegmatite, Conanicut Island, R. I., vi, 374.
Minette, Conanicut Island, R. I., vi, 374; Montana, l, 313.
Nepheline rocks in Brazil, Derby, v, 74.
Ottrotlite in a metamorphic conglomerate in the Green Mts., Whittle, iv, 270.
Peridotite in Central New York, Smyth, iii, 322; dikes near Ithaca, N. Y., Kemp, ii, 410.
Phonolite, Great Britain, v, 441.
Phonolites, etc., of Montana, Pirs-son, i, 394; Weed, i, 506.
Phonolite rocks, Black Hills, vii, 341.
Phyllite, Conanicut Island, R. I., vi, 376.
Pyroxenic rock, azure-blue, New Mexico, Packard and Merrill, iii, 379.
Quartz-diorite porphyry, l, 311.
Quartz-syenite porphyry, l, 311.
Rifting in granite, Tarr, i, 267.
ROCKS—
Roches Volcaniques, les Enclaves, Lac scour, vii, 404.
Shonkinite, Montana, l, 473.
Sodalite-syenite and other rocks from Montana, Lindgren and Melville, v, 286; vi, 76.
Spherulites in rhyolite, Iddings and Penfield, ii, 39.
Syenite, Montana, l, 470; Sagan-aga, Winchell, i, 386; same, Selwyn, iii, 319.
Volcanic, see Igneous above.
Yogoite, Montana, l, 473.
Rogers, F. J., magnesium as source of light, iii, 301.
Rood, O. N., color system, iv, 268; photometric method which is independent of color, vi, 173.
Rosenbusch, H. von, Mikroskopische Physiographie, etc., 3d ed., v, 75.
Rotation air pump, Berge, vi, 479.
measurement of, Prytz, ii, 341.
Roth, J., Geologie, i, 249.
Rothpletz, calcareous alge, iii, 337; Querschnitt Ost-Alpen, vii, 482.
Rowland, H. A., recent progress in spectrum analysis, i, 243.
Royal Society of London, Catalogue of scientific papers, 1874-1888, iv, 170.
Ruedemann, R., graptolitic genus Diplograptus, ix, 458.
Ruhmkorff coil, discharge, Moll, iv, 73.
Russell, I. C., are there glacial records in the Newark system ? i, 499; expedition to Mt. St. Elias, 1890, ii, 171; Mt. St. Elias and its glaciers, iii, 169; Lakes of North America, l, 506.
Russia, Mineralogy of, Koschkarow, v, 533.
Nikitin on the Quaternary deposits of, Wright, v, 459.
Russie, Bibliotheque Geologique, de la, Nikitin, viii, 72.
S
Sabatier, Nitro-metals, vii, 478.
Sabine, W. C., Laboratory Course in Physical Measurements, vi, 74.
Salisbury, R. D., Pleistocene and Pre-pleistocene of Mississippi basin i, 359; age of the orange sands, ii, 253; surface formations of southern New Jersey, ix, 157.
Sandersens, Nitro-metals, vii, 478.
Sandwich Is., see Hawaiian Is. and Kituea.

Seaborg, Recherches sur le Vegetation du niveau Aquitanien, iii, 338.

Sardeson, fossils in St. Peter's sandstone, iii, 539.

Sargent, C. S., Silva of N. America, i, 78.

Sauer, A., granite of Durbach, iv, 429.

Sauvage, R. de, Graphical Thermodynamics, ix, 21.

Saville-Kent, W., Barrier Reef of Australia, v, 362; vi, 155.

Schaeffer, C., Handwörterbuch der Chemiker, i, 492.

Scheele, Carl Wilhelm, Letters of, v, 546.

Schindl, C., Geschichte der Photographie, i, 429.

Schmalhausen, Devonische Pflanzen aus dem Donetz-Becken, ix, 476.

Scheidegger, E. A., constitution of certain micas, vermiculites and chlorites, ii, 242; iii, 378.

Schott, C. A., magnetic declination in the United States, ii, 178.

Schreiner's Spectral-Analyse der Gestirne, v, 358.

Schuchert, C., Devonian rocks in California, vii, 416.

Science, ix, 167.

Scientific Societies' publications, uniformity of size of pages, i, 431.

Scotland, geological map, Geikie, v, 74.

Scott, A., A Treatise on Chemical Theory, iii, 152.

Scott, W. B., Osteology of Poabrotherium, iv, 428; Lacustrine Tertiary formations, vii, 139; variations and mutations, viii, 355.

Scovill, W. S., reduction of selenic acid by potassium bromide in acid solution, i, 402.

Seudder, S. H., Carboniferous cockroaches, i, 22; fossil insects of N. America, i, 330; Tertiary insects of N. America, i, 517; index to known fossil insects of the world, ii, 516, iii, 244; Carboniferous insects of France, vii, 90; Tertiary Aphidie, vii, 481; Tertiary Tipulie, ii, 481; effect of glaciation on the present fauna of North America, viii, 179.

Seaton, Plants of Orizaba, vi, 76.

Seebohm, H., North Polar basin, vi, 403.

Self induction and capacity of coils. Fromme, viii, 509; small coefficients of, ix, 152; in iron wires, Klemencie, ix, 152; and static capacity in a conductor, Bedell and Crehore, iv, 389.

Sella, A. C., Native nickel, i, 252.

Selwyn, A. R. C., Saganaga syenite, iii, 319.

Sensations of interrupted tones, Mayer, vii, 289.

Serpent from Iowa, Call, i, 297.

Seward, A. C., fossil plants and tests of climate, v, 488.

Shaler, N. S., on morasses, iii, 153; on coral reef of east Florida, iii, 155; origin and nature of soils, v, 163; pleistocene dislocations of the U. S., vii, 188; lower Silurian limestone, Tennessee, ix, 160.

Sharpless, F. P., Michigan minerals, ii, 490.

Shaw, W. N., Practical Physics, v, 436.

Sheldon, S., Chapters on electricity, ii, 511.

Sherzer, W. H., native sulphur in Michigan, i, 246.

Shooting stars, catalogue of radiant points of, Denning, i, 75.

Silica, Native, Wright, i, 274.

Silicates, constitution, Clarke, i, 274.

Silver, allotropic. Lea, see under chemistry; colloidal. Barus, viii, 451; modifications, Lüdke, vii, 134.

Simmons, O. L., development of the lungs of spiders, viii, 119.

Sister, siliceous, gold-bearing, Weed, ii, 166.

Smith, C. G., estimation of chlorates, ii, 229.

Smith, E. A., geological survey of Alabama, i, 330, 436; iv, 78, 497; v, 163; vii, 481; underthrust folds and faults, v, 395; post-Eocene formations of Alabama, vii, 385; fossil resin, viii, 73.

Smith, E. F., Electro-chemical analysis, i, 69; Experiments for students in General Chemistry, iii, 153.

Smith, J. P., Arkansas Coal Measures, vii, 482; Trias and Jura of Shasta Co., Calif., viii, 350; Carboniferous strata of Shasta Co., Calif., viii, 350; metamorphic series of the Shasta region of California, i, 946.

Smith, W., preparation of nitrogen monoxide, vii, 475.
Smithsonian Geographical Tables, Woodward, ix, 327.
Institution, report for 1890, iii, 540.
Meteorological Tables, vi, 160.
Smock, J. C., New Jersey Geol. report, 1891, iv, 77.
Smyth, C. H., Jr., peridotite in central New York, iii, 322; Clinton iron ore, iii, 487; alnoite containing melilite, vi, 104; gabbros in the Adirondack region, viii, 54.
Smyth, H. L., geology of Steep Rock Lake, Ontario, ii, 317; Menominee and Marquette series in Michigan, vii, 216.
Snow, B. W., infra red spectra of alkali metals, v, 68.
Snow, C. H., turquois in N. Mexico, i, 511.
Snow crystals, G. Nordenskiiöld, vi, 312.
refraction of light upon, Whitney, v, 389.
Soap film figures, Quincke, ix, 62.
Solids, origin and nature of, Shaler, v, 163.
Solar atmosphere, movements, Deslandres, vii, 427.
corona, Bigelow, ii, 1; reply to Nipher, i, 505.
magnetic period, inversions of temperatures, viii, 435.
prominences, photographic investigation of, Hale, ii, 160, 459.
radiation, measures of the intensity, Ferrel, i, 378.
spectrum in the ultra violet, limit of, Simony, i, 243.
recent progress in, Rowland, i, 243.
system, Harkness, viii, 230.
Soldenerer, H., die Tribus der Gaertneresen, i, 334.
Solids and liquid states, continuity of, Barus, i, 325; ii, 125.
Solomon Islands, chalk and flints, Liveridge, iii, 157.
Solution and pseudo-solution, iii, 333.
Solutions, Ostwald, iii, 335.
Sorauer, P., Physiology of Plants, ix, 325.
Sound, intensity, Wead, i, 332; ii, 21.
velocity, Melde, iii, 289.
and Music, Zahm, v, 69.
Specific heat determined by electric current, Pfannell, ii, 341; of liquid ammonia, Ludeking and Starr, v, 290.
inductive capacity of a dielectric, Trouton and Lilly, iv, 254.
Spectra of the alkali metals, infra red, Snow, v, 68.
flame, of metals, Cochin, vi, 392.
solar, photographic investigation, Hale, ii, 160.
Spectroscope slits, Wadsworth, viii, 19.
Spectrum analysis of the color of water, Vogel, ix, 231.
of argon, see Chemistry.
of liquid oxygen, absorption, Olszewski, ii, 388.
ultra-violet of the solar prominences, Hale, ii, 160, 459; of aluminum, i, 71. Runge.
Spencer, J., Theoretical Mechanics, iv, 256; v, 255.
Spencer, J. W., deformation of the Algonquin Beach and birth of Lake Huron, i, 12; high level shores of the Great Lakes, i, 291; geol. survey of Georgia, vii, 78; deformation of Lundy Beach and birth of Lake Erie, vii, 307; duration of Niagara Falls, viii, 455.
Spencer, J. G., β-bromvalerianic acid, ix, 110.
Spiders, development of the lungs, Simmons, viii, 119.
Spirals with compensated self-induction, Tesla, viii, 509.
Sprengel pump, Wells, i, 390.
Spurr, J. E., stratigraphic position of the Thomson slates, viii, 159.
Squier, G. O., electro-chemical effects due to magnetism, v, 443.
Squinabol, X., florater tiaria Italica, v, 438.
Stanley-Brown, J., bernardinite, a mineral or a fungus i, ii, 48.
Stanton, T. W., stratigraphic position of Bear River formation, iii, 98.
Star catalogue, vii, 406.
Starr, J. E., specific heat of liquid ammonia, v, 200.
Stars, distance of, by Döppler's principle, Coiles, v, 250.
Stas, Jean-Servais, v, 442.
Status of high temperature research, Barus, viii, 392.
Stelzner, A. W., ix, 328.
Stereochemistry, Guide to, Eiloart, vi, 300.
Stevens, W. LeC., comparison of formula for total radiation, iv, 431; recent progress in optics, I, 277, 377.
Stimson, C. T., change of level in the West Indian region, ix, 321.
556 GENERAL INDEX.

St. John, C. E., wave lengths of electricity on iron wires, viii, 311.
Stone, G. H., asphaltum of Utah and Colorado, ii, 148.
Stones for building and decoration, Merrill, ii, 316.
Storer, F. H., elementary manual of chemistry, viii, 425.
Story-Maskellene, N., Crystallography, i, 507.
Sugar Analysis, Wiechmann, i, 69.
Sullivan, G. M., Kentucky geol. survey, iii, 80.
Surface tension in analysis, Gossart, iii, 331; and chemical constitution of liquids, Linebarger, iv, 88.

T

Tarr, R. S., rifing in granite, i, 267; Permian of Texas, iii, 9; central Massachusetts moraine, iii, 141; origin of terraces in glaciated regions, iv, 36; Economic Geology of the U. S., vi, 151.
Taschenburg, O., Bibliotheca Zoologica, ii, 438; vii, 159.
Taylor, F. B., highest shore line on Mackinac Island, iii, 210; changes of level in the region of the Great Lakes, ix, 69; Niagara and the Great Lakes, ix, 249.
Teall, J. H. H., origin of crystalline schists, vi, 480.
Telegraphing without wires, ix, 153.
Telephone for measurement of electrical currents, i, 515; as an optical instrument, Wien, iii, 155.
Telephonic measurement of electro motive force, Barus, viii, 648.
Telescopic work for starlight evenings, Denning, ii, 158.
Temperature of the circumpolar region, ix, 439.
method for obtaining constant, Clew, iii, 239.
pressures, etc., relations between, Linebarger, ix, 380.
of minimum visibility, Gray, ix, 392.
Temperatures, low, Pictet, iii, 153; measurements of high, Holborn and Wien, iv, 499; Barus, viii, 332, 1, 502; underground, Agassiz, i, 503.
Terrestrial magnetism, Wilde's explanation, Bauer, iii, 406; secular variation of, Bauer, i, 196, 189, 314.
Tesla's experiment, simplification of, v, 538.
Texas Academy of Science, Transactions, vol. 1, v, 78.

Texas geological survey. See Geol. Reports and Surveys.
Permian of, Tarr, iii, 9.
Thermal variation of viscosity and electrolytic resistance, Barus, iv, 235.
Thermodynamics, graphical, R. de Saussure, ix, 31.
Thermo-electrics, Barus, vii, 366.
Thorne, J. M., Cordoba Durchmusterung, vi, 159.
Thompson, J. O., law of elastic lengthening, iii, 82.
Thompson, S. F., lectures on the Electromagnet, i, 327; Electricity and Magnetism, ix, 139.
Thomson, Sir W., popular lectures and addresses, vol. ii, viii, 433; see Kelvin.
Thomson's quadrant electrometer, Himstedt, vii, 133.
Thought transference, Lodge, ii, 343.
Thunderstorms, origin, Smith, i, 439.
Thwing, C. B., color photography by Lippmann's process, ii, 388; photographic mapping the magnetic-field, iv, 374.
Time, estimates of geologic, King, v, 1; Upham, v, 209; Fisher, v, 464; Walcott, vi, 307.
Tin and iron, alloys of, Hedden, iv, 464.
Todd, M. L., total eclipse of the sun, viii, 76.
ToledoPlatow, M., Recherches Mineralogiques, vii, 146.
Total-reflectometer, Pulfrich, i, 431.
Transformations of energy, mechanical into chemical, Lea, vii, 377.
Trinidad, Pitch Lake of, Peckham, i, 33.
Trowbridge, J., dampening of electric oscillations on iron wires, ii, 238; phase-meter, iii, 292; oscillations of lightning discharges, vi, 195; electrical waves on iron wires, viii, 397; velocity of electric waves, ix, 297, i, 104.
Tschermak's theory of the chlorite group, Clarke, iii, 190.
Turbellaria Aecia, von Graff, i, 443.
Turner, H. W., glacial pot-holes in California, iv, 450; lavas of Mt. Lassen, California, iv, 455; gold ores of California, ix, 374; gold in serpentine, ix, 478.
Tyrrell, J. B., glacial phenomena west of Hudson Bay, ix, 322.
U
Uhler, P. R., Albinirapean studies, iv, 333.
Ulrich, E. O., the Bryozoa of the Lower Silurian in Minnesota, v, 440; Minnesota geological survey, vol. iii, vi, 239.
Ultra red rays, dispersion, Rubens, iv.
United States, geological atlas, viii, 170; 1, 504.
Upham, W., review of the Quaternary Era, and deposits of flooded rivers, i, 33.
exploration of the glacial Lake Agassiz in Manitoba, ii, 429.
classification of mountain ranges, iii, 74; fossils near Boston, iii, 201.
ice age as one glacial epoch, v, 70; estimates of geologic time, v, 209.
epigeon movements associated with glaciation, vi, 114.
fishing banks from Cape Cod to Newfoundland, vii, 123; marine shell fragments near Boston, vii, 238; diversity of the glacial drift, vii, 305.
Champlain subsidence and re-elevation of the St. Lawrence River basin, glacial period, ix, 305.
Upsala, Bulletin of Geological Institution, vi, 309.

V
Vacuum discharge streamers, action upon each other, Pupin, iii, 263; pump, mercury, Pupin, ix, 19.
Van Hise, C. R., conflicting views of Lake Superior stratigraphy, i, 117; iron ores of Michigan, iii, 116; structural relations of the Huronian, iii, 224.
Vapor density under diminished pressure, Schall, iv, 72.
Variations and mutations, Scott, viii, 355.
Veeder, M. A., periodicity of the aurora, i, 156.
Vegetable resources of India, viii, 511.
Verrill, A. E., Echinoderms of Northeastern America, ix, 197, 199.
Vertebrate Embryology, Minot, vii, 158.
Vertebrate fossils, Marsh, ii, 265, 336; see Geology.
Vibrations of strings, Menzel and Raps, iii, 154.
Vines, S. H., Text-Book of Botany, ix, 76, 481.
Viscosity, investigation of, Barus, v, 87.
Visibility, minimum temperature of, Gray, ix, 232.
Vision, persistence of, Ferry, iv, 192.
Viviparidae, distribution of North American, Call, viii, 132.
Vogdes, A. W., Bibliography of Paleozoic Crustacea, from 1698 to 1889, i, 486.
Volcanic, see Geology and Rocks.
Volcanics, three new analyses of sodalite, ix, 495.
Voltaic arc, mercury, Avon, v, 159.
Vollameter, use of cupric nitrate in, Beach, vi, 81.
Vorwelt u. Entwickelungegeschichte, Koken, viii, 488.
Vulcanite, physical properties, Mayer, i, 54.

W
Wadsworth, F. L. O., eccentricity of a graduated circle with one vernier, vii, 373; interrupter for large induction coils, viii, 497; design for large spectroscope slits, viii, 19.
Wadsworth, M. E., relations of the eastern sandstone of Keweenaw Point to the Lower Silurian limestone, ii, 170; trap range of the Keweenawan series, ii, 417; subdivisions of Archean in Northern Michigan, v, 72.
Waggener, W. J., mercurial barometer, ii, 387; gelatine slides for lantern projection, v, 78.
Wagner's Chemical Technology, iii, 535.
Walcott, C. D., discovery of fish remains in Lower Silurian beds, i, 245; fauna of the lower Cambrian, ii, 345.
Cambrian, iii, 244.
Cambrian rocks of Virginia, etc., iv, 52; Cambrian rocks of Pennsylvania and Maryland, iv, 469.
North American continent during the Cambrian, v, 163.
Cambrian rocks of Pennsylvania, vii, 37; Olenellus in No. New Jersey, vii, 300; appendages of Trilobites, vii, 481.
lower Cambrian rocks in eastern California, ix, 141; Appalachian type of folding, ix, 159, 169.
Walden, P. T., double chlorides, bromides and iodides of cesium and cadmium, vi, 425; cesium-cupric bromides, vii, 94; double chlorides and bromides of cesium, rubidium, potassium and ammonium, viii, 285.

Walther, J., die Denudation in der Wüste, etc., ii, 177; Bionomie des Meeres, vi, 240.

Ward, L. F., age of plants of the United States, ix, 558.

Wells, H. L., composition of pollucite, i, 218; self-feeding Sprengel pump, i, 390.

Weissmann, A., Essays upon Heredity, iii, 166.

Well at Wheeling, W. Va., Hallock, iii, 234.

Weller, S., fossil faunas at Spring-field, Missouri, ix, 185.

Wells, H. L., composition of pollucite, i, 218; self-feeding Sprengel pump, i, 390.

cessium trihalides, iii, 17; rubidium and potassium trihalides, iii, 475.

alkali-metal pentahalides, iv, 42; berzelite from Hebron, Me., iv, 114; double halides of silver and the alkali-metals, iv, 155; cesium and rubidium chloraurates and bromaurates, iv, 157; cesium-mercuric halides, iv, 221.

cesium-lead and potassium-lead halides, v, 121; ammonium-lead halides, vi, 25; rubidium-lead halides, etc., vi, 34; double salts of lead tetrachloride, vi, 180; quantitative determination of cesium, vi, 186; peculiar halides of potassium and lead, vi, 190; double chlorides, bromides, and iodides of cesium and cadmium, vi, 435; double chlorides, bromides and iodides of cesium and zinc, vi, 431.

cesium-cupric chlorides, vii, 91, 96; cesium-cupric bromides, vii, 94.

leadhillite, Missouri, viii, 219.

compounds containing lead and extra iodine, i, 21; double salts of cesium chloride, etc., i, 249; ammonium cuprous double halogen salts, i, 390.

West Indies, observations in, Agassiz, v, 78, 358.

Wheeler, H. A., ferro-goslarite, i, 212; Missouri barite, ii, 485; rubidium and potassium trihalides, iii, 475; alkali-metal pentahalides, iv, 42; alkaline iodates, iv, 123; double halides of silver and the alkali-metals, iv, 155; cesium and rubidium chloraurates and bromaurates, iv, 157; double halides of tellurium with potassium, rubidium and cesium, v, 267; double halides of arsenic with cesium and rubidium, vi, 88; double halides of antimony with rubidium, vi, 269.

White, C. A., Bear River formation, iii, 91.
White, D., a new teniopterid fern and its allies, v, 459.
White, I. C., stratigraphy of the bituminous coal field of Pennsylvania, Ohio, and W. Virginia, iii, 156; Mannington oil-field, iv, 78.
Whitfield, R. P., Cretaceous fossils of
Whiteaves, J. F., Devonian fossils,
Whitmore, J., method of increasing
Whitney, A. W., refraction of light upon the snow, v, 389.
Whymper, E., Appendix to Travels amongst the Andes, iii, 496.
Wiechmann, F. G., sugar analysis, i, 69.
Wilde's explication of terrestrial magnetism, Bauer, iii, 496.
Wiley, H. W., Agricultural Analysis, i, 431.
Williams, E. H., Jr., age of extra- morphic fringe in East Pennsylvania, vii, 84; southern ice limit in Eastern Pennsylvania, ix, 174.
Williams, G. H., analase from Buckingham Co., Va., ii, 431; greenstone schist areas of Michigan, ii, 259; Baltimore and the geology of its environs, iii, 455; volcanic rocks of South Mt., in Pennsylvania and Maryland, iv, 482; geological map of Baltimore, v, 73; rock-cutting and grinding machine, v, 192; piedmontite, and scheelite in rhyolite of South Mt., Pa., vi, 50; volcanic rocks of East, N. A., vi, 140; geology and physical features of Maryland, vii, 420.
Williamson, W. C., fossil plants of the Coal-Measures, i, 457; v, 457.
Wills, B., Appalachian faulting; vi, 257.
Willis, O. R., Practical Flora, ix, 77.
Wilson, R. W., thermal conductivities of marble and slate, i, 435.
Winchell, H. V., age of the Sagana syenite, i, 386; Cretaceous in Minnesota, vii, 146.
Winchell, N. H., geological survey of Minnesota, i, 240; v, 78.
Wind, internal work of, Langley, vii, 41; in the U. S. diurnal, rise and fall, Waldo, i, 253; velocities of, in the U. S., Waldo, ix, 401.
Winslow, A., geological survey of Missouri, bulletin, i, 248, 329, 435, 444, v, 354; flexibility of limestone, iii, 133; coal-deposits of Missouri, iii, 435; Cambrian in Missouri, v, 221.
Wisconsin Academy of Sciences, transactions, iv, 262.
Wolff, J. E., Cambrian fossils in the Stockbridge limestone of Vermont, i, 435; apparatus for geological laboratory, vii, 355.
Wood, R. W., Jr., pressure on ice, i, 20; combustion of gas jets under pressure, i, 477; demonstration of caustics, i, 301.
Woodward, A. S., Devonian fishes of Canada, v, 73.
Woodward, H. B., Ramsay's physical geology and geography of Great Britain, vii, 430.
Woodward, R. S., iceed-bar base apparatus of the U. S. Coast and Geodetic Survey, v, 33.
Woodworth, J. B., post-glacial eolian action in So. New England, vii, 63; Carboniferous fossils, Norfolk Co., basin, vii, 145; dinosaur tracks in New Jersey, i, 481.
Worthen, A. H., geological survey of Illinois, i, 159.
Wright, A. A., Nikitin on the Quaternary deposits of Russia, v, 459.
Wright, B., Native Silica, i, 274.
Wright, G. F., interglacial submergence in England, iii, 1; unity of the glacial epoch, iv, 351; extra-
morainic drift of New Jersey, vi, 304; continuity of the glacial period, vii, 161; glacial phenomena of Newfoundland, etc., ix, 86, 156.
Wright, M. R., Heat, vi, 301.
Wyatt, F., Phosphates of America, iii, 79.

Y
Yeates, W. S., plattnerite from Mullan, Idaho, iii, 407.

Z
Zeiller, R., fossil flora of French Carboniferous, ii, 75; Paléontologie végétale, iv, 334; l'appareil fructificateur des Sphenophyllum, viii, 230.
Zepharovich, V. von, Mineral Lexicon für Oesterreich, iii Band, vi, 482.
Zinc oxide, artificial crystals, Ries, viii, 236.
Zinc-bearing spring waters from Missouri, Hillebrand, iii, 418.
Zirkel, F., Lehrbuch der Petrographie, vi, 152; vii, 320; ix, 333.
Zittel, K. A. von, Handbuch der Paläontologie, i, 330; Grundzüge der Paläontologie, i, 208.
Zoological Station, Naples, vi, 80.